满分5 > 初中数学试题 >

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B. (1)...

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)已知顶点坐标,设抛物线解析式的顶点式y=a(x-2)2+1,把O(0,0)代入即可; (2)∵△MOB与△AOB公共底边OB,最高点A的纵坐标为1,只需要点M的纵坐标为-3即可,将y=-3,代入解析式可求M点坐标; (3)由已知△OAB为等腰三角形,点N在抛物线上,只可能OB=BN,即要求∠AOB=∠BON,A、A'要关于x轴对称,通过计算,不存在. 【解析】 (1)由题意,可设抛物线的解析式为y=a(x-2)2+1, ∵抛物线过原点, ∴a(0-2)2+1=0,a=-. ∴抛物线的解析式为y=-(x-2)2+1=-x2+x. (2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB, ∴△MOB的高是△AOB高的3倍,即M点的纵坐标是-3. ∴-3=-x2+x,即x2-4x-12=0. 解之,得x1=6,x2=-2. ∴满足条件的点有两个:M1(6,-3),M2(-2,-3) (3)不存在. 由抛物线的对称性,知AO=AB,∠AOB=∠ABO. 若△OBN与△OAB相似,必有∠BON=∠BOA=∠BNO, 即OB平分∠AON, 设ON交抛物线的对称轴于A'点,则A、A′关于x轴对称, ∴A'(2,-1). ∴直线ON的解析式为y=-x. 由-x=-x2+x,得x1=0,x2=6. ∴N(6,-3). 过N作NE⊥x轴,垂足为E.在Rt△BEN中,BE=2,NE=3, ∴NB==. 又∵OB=4, ∴NB≠OB,∠BON≠∠BNO,△OBN与△OAB不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N点. 所以在该抛物线上不存在点N,使△OBN与△OAB相似.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4manfen5.com 满分网,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

manfen5.com 满分网 查看答案
当a≥0,b≥0时,
(1)求证:a+b≥manfen5.com 满分网
(2)当满足条件______时,a+b=manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.

manfen5.com 满分网 查看答案
如图,△ABC的三个顶点都在格点上.
(1)画出△ABC绕点A逆时针旋转90°所得图形△AB'C';
(2)直接写出△AB′C′外接圆的圆心D坐标______
(3)求∠B′A C′的正切值.

manfen5.com 满分网 查看答案
一枚质量均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,连续抛掷两次.
(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;
(2)记两次朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数manfen5.com 满分网的图象上的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.