根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出最短路线,再利用勾股定,求出即可.
【解析】
作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.
作EA延长线的垂线,垂足为H,
∵AB=BC=1,AE=DE=2,
∴AA′=2BA=2,AA″=2AE=4,
则Rt△A′HA中,∵∠EAB=120°,∴∠HAA′=60°,
∵A′H⊥HA,
∴∠AA′H=30°,
∴AH=AA′=1,
∴A′H==,
A″H=1+4=5,
∴A′A″==2.
故选:B.