如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上
任意一点(不与点A、B重合),连接AB、AC、BC、OC.
(1)指出图中与∠ACO相等的一个角;
(2)当点C在⊙P上什么位置时,直线CA与⊙O相切?请说明理由;
(3)当∠ACB=60°时,两圆半径有怎样的大小关系?请说明你的理由.
考点分析:
相关试题推荐
如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移5个单位长度,画出平移后的△A
1B
1C
1;
(2)画出△ABC关于x轴对称的△A
2B
2C
2;
(3)将△ABC绕原点O旋转180°,画出旋转后的△A
3B
3C
3;
(4)在△A
1B
1C
1、△A
2B
2C
2、△A
3B
3C
3中,△______与△______成轴对称;△______与△______成中心对称.
查看答案
据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=
小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)
查看答案
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案
去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?
查看答案
如图所示,在平行四边形ABCD的对角线上AC上取两点E和F,若AE=CF.
求证:∠AFD=∠CEB.
查看答案