如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个______结论是否成立,若成立,请给予证明;若不成立,请说明理由.
考点分析:
相关试题推荐
某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.
(1)甲、乙两队单独完成各需多少天?
(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.
查看答案
某校要选举一名学生会主席,先对甲、乙、丙三名候选人进行了笔试和面试,成绩如下表;又进行了学生投票,每个学生都投了一张选票,且选票上只写了三名候选人中的一名,每张选票记0.5分.对选票进行统计后,绘有如图(1),图(2)尚不完整的统计图.
笔试、面试成绩统计表
| 甲 | 乙 | 丙 |
笔试成绩(分) | 72 | 86 | 90 |
面试成绩(分) | 82 | 85 | 87 |
(1)乙的得票率是______,选票的总数为______;
(2)补全图(2)的条形统计图;
(3)求三名候选人笔试成绩的极差;
(4)根据实际情况,学校将笔试、面试、学生投票三项得分按2:4:4的比例确定每人的最终成绩,高者当选,请通过计算说明,哪位候选人当选.
查看答案
如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
查看答案
如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.
(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;
(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)
查看答案
计算:(-1)
2011+2tan60°+2
-
+|1-
|.
查看答案