满分5 > 初中数学试题 >

如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠...

如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=manfen5.com 满分网∠BAD.
(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;
(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;
(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.
manfen5.com 满分网
(1)可通过构建全等三角形来实现线段间的转换.延长MB到G,使BG=DN,连接AG.目的就是要证明三角形AGM和三角形ANM全等将MN转换成MG,那么这样MN=BM+DN了,于是证明两组三角形全等就是解题的关键.三角形AMG和AMN中,只有一条公共边AM,我们就要通过其他的全等三角形来实现,在三角形ABG和AND中,已知了一组直角,BG=DN,AB=AD,因此两三角形全等,那么AG=AN,∠1=∠2,那么∠1+∠3=∠2+∠3=∠MAN=∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出MN=GM了. (2)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BM上截取BG,使BG=DN,连接AG.根据(1)的证法,我们可得出DN=BG,GM=MN,那么MN=GM=BM-BG=BE-DN. (3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在DN上截取DF,使DF=BM,连接AG.根据(1)的证法,我们可得出∠DAF=∠BAM,AF=AM,那么MN=NF=DN-DF=BN-BM. 【解析】 (1)证明:延长MB到G,使BG=DN,连接AG. ∵∠ABG=∠ABC=∠ADC=90°,AB=AD, ∴△ABG≌△ADN. ∴AG=AN,BG=DN,∠1=∠4. ∴∠1+∠2=∠4+∠2=∠MAN=∠BAD. ∴∠GAM=∠MAN. 又AM=AM, ∴△AMG≌△AMN. ∴MG=MN. ∵MG=BM+BG. ∴MN=BM+DN. (2)MN=BM-DN. 证明:在BM上截取BG,使BG=DN,连接AG. ∵∠ABC=∠ADC=90°,AD=AB, ∴△ADN≌△ABG, ∴AN=AG,∠NAD=∠GAB, ∴∠MAN=∠NAD+∠BAM=∠DAB, ∴∠MAG=∠BAD, ∴∠MAN=∠MAG, ∴△MAN≌△MAG, ∴MN=MG, ∴MN=BM-DN. (3)MN=DN-BM.
复制答案
考点分析:
相关试题推荐
某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表所示:
价格
种类进价(元/台)售价(元/台)
电视机2 0002 100
冰箱2 4002 500
洗衣机1 6001 700
其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.
(1)求出y与x之间的函数关系;
(2)在不超出现有资金的前提下,商场有哪几种进货方案?
(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
查看答案
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距manfen5.com 满分网km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,四边形AECD是等腰梯形,CD∥AE,CE=AD=AF=EF,⊙O 的半径为1.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若在等腰梯形AECD上够按如图所示剪下两个扇形,做成一个圆锥(接缝忽略不计).

manfen5.com 满分网 查看答案
如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件“转动一次,得到的数恰好是0”发生的概率;
(2)写出此情境下一个不可能发生的事件;
(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.