满分5 > 初中数学试题 >

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点...

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(manfen5.com 满分网),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

manfen5.com 满分网
(1)由二次函数y=ax2+bx+3的解析式,首先求出B点坐标,然后由△AOB∽△BOC,根据相似三角形的对应边成比例,求出OC的长度,得出C点坐标;根据相似三角形的对应角相等得出∠OAB=∠OBC,从而得出∠ABC=90°;由y=ax2+bx+3图象经过点A(-,0),C(4,0),运用待定系数法即可求出此二次函数的关系式; (2)如果以点P、C、O为顶点的三角形是等腰三角形,那么分三种情况讨论:①CP=CO;②PC=PO;③OC=OP.针对每一种情况,都应首先判断M点是否在线段AC上,然后根据相似三角形的对应边成比例求出m的值. 【解析】 (1)由题意,得B(0,3), ∵△AOB∽△BOC, ∴∠OAB=∠OBC, ∴=, ∴=, ∴OC=4,∴C(4,0); ∴∠OAB+∠OBA=90°, ∴∠OBC+∠OBA=90°, ∴∠ABC=90°; ∵y=ax2+bx+3图象经过点A(-,0),C(4,0), ∴, ∴y=-x2+x+3; (2)①如图1,当CP=CO时,点P在BM为直径的圆上, 因为BM为圆的直径, ∴∠BPM=90°, ∴PM∥AB, ∴△CPM∽△CBA, ∴CM:CA=CP:CB, CM:6.25=4:5, ∴CM=5, ∴m=4-5=-1; ②如图2,当PC=PO时,点P在OC垂直平分线上, 得PC=BC=2.5, 由△CPM∽△CBA,得CM=, ∴m=4-=; ③当OC=OP时,M点不在线段AC上. 综上所述,m的值为或-1.
复制答案
考点分析:
相关试题推荐
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
查看答案
如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.

manfen5.com 满分网 查看答案
同时掷两个质地均匀的骰子,骰子六个面上分别标有数字1、2、3、4、5、6,用树形图或列表法计算下列事件的概率:
(1)至少有一个骰子的点数为3.
(2)两个骰子的点数的和是3的倍数.
查看答案
某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:
 分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60 
 人数 12001461 642 480 217 
(1)填空:
①本次抽样调查共测试了______名学生;
②参加地理会考模拟测试的学生成绩的中位数落在分数段______上;
③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为______
(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?
查看答案
如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.