满分5 > 初中数学试题 >

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y...

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2-18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.
(1)求线段OA、OC的长;
(2)求直线CE与x轴交点P的坐标及折痕CE的长;
(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

manfen5.com 满分网
(1)利用式子相乘法把方程左边分解为两一次因式积的形式,然后根据两数相乘积为0,两数中至少有一个为0,转化为两个一元一次方程,分别求出方程的解得到原方程的解,根据OA大于OC,即可得到OA及OC的长; (2)由折叠可知三角形EBC与三角形EDC全等,根据全等三角形的对应边相等得到EB=ED,CB=CD,又矩形ABCD对边相等,从而得到CD的长,再由OC的长,利用勾股定理求出OD的长,进而求出AD的长,在直角三角形AED中,设EA=x,则DE=8-x,再由AD的长,利用勾股定理列出关于x的方程,求出方程的解得到AE的长,即为E的纵坐标,而OA的长即为E的横坐标,确定出E的坐标,同时得到BE的长,再由BC的长,在直角三角形BCE中,利用勾股定理求出折痕CE的长; (3)存在,应该有两条如图: ①直线BF,根据折叠的性质可知CE必垂直平分BD,那么∠DGP=∠CGF=90°,而∠CFG=∠DPG(都是∠OCP的余角),由此可得出两三角形相似,那么可根据B、D两点的坐标求出此直线的解析式. ②直线DN,由于∠FCO=∠NDO,那么可根据∠OCE即∠BEC的正切值,求出∠NDO的正切值,然后用OD的长求出ON的值,即可求出N点的坐标,然后根据N、D两点的坐标求出直线DN的解析式. 【解析】 (1)方程x2-18x+80=0, 因式分解得:(x-8)(x-10)=0, 即x-8=0或x-10=0, 解得:x1=8,x2=10, ∴OA=10,OC=8; (2)由折叠可知:△EBC≌△EDC,∴EB=ED, ∴CB=CD,又矩形OABC,∴AB=OC=8, ∴CB=CD=OA=10,又OC=8, 在Rt△OCD中,根据勾股定理得:OD==6, ∴AD=OA-OD=10-6=4, 又BE+EA=AB=8,且EB=ED, ∴DE+EA=8,即DE=8-EA, 在Rt△AED中,设AE=x,则DE=8-x,又AD=4, 根据勾股定理得:(8-x)2=x2+16, 整理得:16x=48, 解得:x=3, 则E的坐标为(10,3),又C(0,8), 设直线CE的解析式为y=kx+b, 将C与E坐标代入得:, 解得:k=-,b=8, 则直线CE解析式为y=-x+8, 令y=0求出x=16,即P坐标为(16,0); 此时BE=BA-EA=8-3=5,又BC=OA=10, 在Rt△BCE中,根据勾股定理得: CE==5; (3)存在.满足条件的直线l有2条:y=-2x+12,y=2x-12. 如图2:准确画出两条直线.
复制答案
考点分析:
相关试题推荐
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
已知:在四边形ABCD中,AB=AD,∠BAD=60°,BC=DC,∠BCD=120°,将直角三角板PMN的30°角的顶点P与点A重合,旋转三角板PMN,在旋转过程中,三角板PMN的直角边PM与直线BC交于点E,斜边PN与直线DC交于点F,连接EF.
(1)当E、F分别在线段BC、CD上时,(如图①),求证:EF=BE+DF;
(2)当E、F分别在直线BC、CD上时,(如图②、图③),线段EF、BE、DF之间又有怎样的数量关系,请直接写出结论.
manfen5.com 满分网
查看答案
甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题:
(1)乙比甲晚多长时间到达李庄?
(2)甲因事耽误了多长时间?
(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?

manfen5.com 满分网 查看答案
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
manfen5.com 满分网
查看答案
在数学活动课上,小明做了一梯形纸板,测得一底为10cm,高为12cm,两腰长分别为15cm和20cm,求该梯形纸板另一底的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.