满分5 > 初中数学试题 >

如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象...

manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可; (2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3; (3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在. 【解析】 (1)∵点A(3,4)在直线y=x+m上, ∴4=3+m.(1分) ∴m=1.(2分) 设所求二次函数的关系式为y=a(x-1)2.(3分) ∵点A(3,4)在二次函数y=a(x-1)2的图象上, ∴4=a(3-1)2, ∴a=1.(4分) ∴所求二次函数的关系式为y=(x-1)2. 即y=x2-2x+1.(5分) (2)设P、E两点的纵坐标分别为yP和yE. ∴PE=h=yP-yE(6分) =(x+1)-(x2-2x+1)(7分) =-x2+3x.(8分) 即h=-x2+3x(0<x<3).(9分) (3)存在.(10分) 解法1:要使四边形DCEP是平行四边形,必需有PE=DC.(11分) ∵点D在直线y=x+1上, ∴点D的坐标为(1,2), ∴-x2+3x=2. 即x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去)(13分) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.(14分) 解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.(11分) 设直线CE的函数关系式为y=x+b. ∵直线CE经过点C(1,0), ∴0=1+b, ∴b=-1. ∴直线CE的函数关系式为y=x-1. ∴ 得x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.
复制答案
考点分析:
相关试题推荐
为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.
(1)求这批赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;
(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
A地B地C地
运往D县的费用(元/吨)220200200
运往E县的费用(元/吨)250220210
为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
查看答案
如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.
manfen5.com 满分网
请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.
查看答案
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传给另一人就记为踢一次.
(1)若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是多少?(用树状图或列表法说明)
(2)若经过三次踢毽后,毽子踢到小王处的概率最小,应确定从谁开始踢,并说明理由.

manfen5.com 满分网 查看答案
如图,直线l1与l2相交于点P,点P横坐标为-1,l1的解析表达式为y=manfen5.com 满分网x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.
(1)求点B的坐标;
(2)求直线l2的解析表达式;
(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的manfen5.com 满分网的点M的坐标;
(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.