设点P(x,y),则由两点间的距离公式,推出3x2+3y2-6x+6y+64,整理后得到3(x-1)2+3(y+1)2+58,根据最小值求出即可.
【解析】
设点P(x,y),则由两点间的距离公式,得
PA2+PB2+PC2
=(x-3)2+(y+1)2+(x+1)2+(y-4)2+(x-1)2+(y+6)2
=3x2+3y2-6x+6y+64,
=3(x2-2x+1)+3(y2+2y+1)+58,
=3(x-1)2+3(y+1)2+58,
∵要使上式的值最小,
必须x-1=0,y+1=0,
∴x=1,y=-1,
即P(1,-1),
故答案为:(1,-1).