满分5 > 初中数学试题 >

如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,...

如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)若点M(0,-4),动点P从M点出发,沿直线运动到该抛物线对称轴的某点E,再沿直线运动到x轴上某点F,最后沿直线运动到点C,求使点P运动的总路程最短的点E、点F的坐标,并求出这个最短路程的长.

manfen5.com 满分网
(1)利用待定系数法求二次函数解析式,进而利用配方法求出顶点坐标即可; (2)根据点的坐标得出AC 2=AO 2+CO2=1+4=5,BC 2=BO 2+CO2=16+4=20,AB 2=(AO+BO)2=25,即可得出△ABC的形状; (3)作C关于x=的对称点C′,M关于x轴对称点M′,连接M′C′交x轴于点F、抛物线对称轴于点E,利用勾股定理求出即可,或者做M点关于抛物线对称轴的对称点M′(3,-4),做C点关于x轴的对称点C′(0,2),连接M'C',进而得出即可. 【解析】 (1)∵抛物线y=x2+bx-2经过A(-1,0), ∴0=-b-2, 解得:b=-, ∴y=x2-x-2, ∵y=x2-x-2=(x2-3x)-2=(x-)2-, ∴顶点D的坐标为:(,-); (2)当x=0,∴y=-2, ∴C点坐标为:(0,-2), ∴y=x2-x-2与x轴交于A、B, ∴0=x2-x-2, 解得:x1=-1,x2=4, ∴B点坐标为:(4,0), ∴AC 2=AO 2+CO2=1+4=5, BC 2=BO 2+CO2=16+4=20, AB 2=(AO+BO)2=25, ∴AC 2+BC 2=AB2, ∴△ABC的形状是直角三角形; (3)①作C关于x=的对称点C′, M关于x轴对称点M′,连接M′C′交x轴于点F、抛物线对称轴于点E, 则有:MF+FE+EC为点P运动的最短路程, 求出直线M′C′:y=-2x+4, 求出点F(2,0),点E(,1), 最短路线为:3. ②做M点关于抛物线对称轴的对称点M′(3,-4), 做C点关于x轴的对称点C′(0,2), 连接M'C',则M'C'长度即为所求最小长度3; M'C'与x轴交点为所求F点, 而M'C'与抛物线对称轴的交点为所求E点, F点坐标(1,0), E点坐标(1.5,-1).
复制答案
考点分析:
相关试题推荐
如图1,在▱ABCD中,AC、BD相交于点O,BM⊥直线AC于M,DN⊥直线AC于N.
manfen5.com 满分网
(1)线段OM、ON有什么样的数量关系?直接写出结论;
(2)若直线AC饶点A旋转到图2的位置时,其它条件不变,线段OM、ON有什么样的数量关系?请给予证明;
(3)若直线AC饶点A继续旋转,通过前面问题的解决你会发现什么规律?在备用图中画出一个与图2不同位置的图形,并给予证明.
查看答案
为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.
manfen5.com 满分网
(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;
(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.
查看答案
如图,将一个转盘3等份,并在每一份内注上“红、蓝、黄”标记.小明和小亮用这个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明赢,否则小亮赢.
(1)若仅转动转盘两次,两次转出的颜色恰好配成紫色,则该事件属于______事件;(填“必然”或“随机”)
(2)你认为谁获胜的概率大?请通过“画树状图”或“列表”的方法加以分析说明.

manfen5.com 满分网 查看答案
如图,已知Rt△ABC,∠ABC=90°.
(1)根据下列语句作图并保留作图痕迹:作Rt△ABC的外接圆⊙O,过点A作⊙O的切线PA与AB的垂直平分线交于点P.
(2)连接PB,求证:PB是⊙O的切线;
(3)已知PA=AB=manfen5.com 满分网,求线段PA、PB与弧AB围成的图形的面积.

manfen5.com 满分网 查看答案
某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.