满分5 >
初中数学试题 >
一元二次方程x2-5x+6=0的两根分别是x1,x2,则x1+x2等于( ) A...
一元二次方程x2-5x+6=0的两根分别是x1,x2,则x1+x2等于( )
A.5
B.6
C.-5
D.-6
考点分析:
相关试题推荐
一次函数y=2x-3的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
初中我们学过了正弦 余弦的定义,例如sin30°=
,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°,根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b,BC=a
(1)用b,c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.
查看答案
如图,在直角坐标系xOy中,点P为函数y=
x
2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=
x
2有无其它公共点并说明理由.
查看答案
问题背景:
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上______;
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积;
探索创新:
(3)若△ABC三边的长分别为
、
、
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
查看答案
已知抛物线Y=x
2-(m
2+4)x-2m
2-12
(1)证明:不论m取什么实数,抛物线必与x有两个交点
(2)m为何值时,x轴截抛物线的弦长L为12?
(3)m取什么实数,弦长最小,最小值是多少?
查看答案