满分5 > 初中数学试题 >

如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形...

如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.
(1)试比较EO、EC的大小,并说明理由;
(2)令m=manfen5.com 满分网,请问m是否为定值?若是,请求出m的值;若不是,请说明理由;
(3)在(2)的条件下,若CO=1,CE=manfen5.com 满分网,Q为AE上一点且QF=manfen5.com 满分网,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式;
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据折叠的条件得到EO=EF,在直角△CEF中,斜边大于直角边,因而EF>EC故EO>EC (2)四边形CFGH与四边形CNMO的面积可以用直角△CEF的面积,可以证明四边形CFGH与四边形CNMO的面积相等.因而就可以求出m的值. (3)已知OC=1,可以得到C点的坐标是(0,1),易证△EFQ是等边三角形,已知QF=就可以求出Q点的坐标,把C,Q点的坐标代入函数y=mx2+bx+c,就可以求出b,c的值,就可以得到函数的解析式. (4)过Q作y轴的垂线,已知E,Q点的坐标,可以根据三角形相似,求出OA的长,就可以求出P点的横坐标,进而求出P点的坐标. 若△PBK与△AEF相似,根据相似三角形的对应边的比相等,可以求出BK的值,即得到K的坐标. 【解析】 (1)EO>EC,理由如下: 由折叠知,EO=EF,在Rt△EFC中,EF为斜边, ∴EF>EC, 故EO>EC. (2)m为定值,理由如下: ∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO-EC)=CO•(EO-EC), S四边形CMNO=CM•CO=|CE-EO|•CO=(EO-EC)•CO, ∴. (3)∵CO=1,, ∴EF=EO=, ∴cos∠FEC=, ∴∠FEC=60°, ∴, ∴△EFQ为等边三角形,. 作QI⊥EO于I,EI=,IQ=, ∴IO=, ∴Q点坐标为. ∵抛物线y=mx2+bx+c过点C(0,1),Q,m=1, ∴可求得,c=1, ∴抛物线解析式为. (4)由(3),, 当时,<AB, ∴P点坐标为, ∴BP=AO. 方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下: ①时,BK=, ∴K点坐标为或; ②时,, ∴K点坐标为或(0,1). 故直线KP与y轴交点T的坐标为. 方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°. 过P作PR⊥y轴于R,则∠RTP=60°或30°. ①当∠RTP=30°时,, ②当∠RTP=60°时,, ∴.
复制答案
考点分析:
相关试题推荐
已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.manfen5.com 满分网
查看答案
2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比例2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.
(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?
(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?
(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.
查看答案
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=manfen5.com 满分网,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.

manfen5.com 满分网 查看答案
綦江县教委在推进课堂教学改革的过程中,为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,九年级学生每天的课外作业总时间不得超过1小时(学生阅读、自学除外):
为了了解各校情况,县教委对其中40个学校九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:
(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;
(2)将图中的条形图补充完整;
(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
求证:四边形OBEC是菱形.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.