满分5 > 初中数学试题 >

已知,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,BD平分∠ABC,...

已知,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,BD平分∠ABC,交AC于点D.动点P从D点出发沿DC向终点C运动,速度为每秒1个单位,动点Q从B点出发沿BA向终点A运动,速度为每秒4个单位.两点同时出发,当一点到达终点时,两点停止运动.设P、Q运动时间为t秒.
(1)求线段CD的长;
(2)求△BPQ的面积S与t之间的函数关系式;当S=7.2时,求t的值;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,直接写出使所组成的四边形为菱形的t的值.

manfen5.com 满分网
(1)过点D作DE⊥AB于E,由角平分线的性质定理就可以得出DE=DC,BE=BC=6,由勾股定理可以求出AB,设出CD=x,则可以表示出AD、BE,由勾股定理就可以求出x. (2)作QF⊥AC于F,可以这么三角形相似把QF用含t的式子表示出来,而S△BPQ=S△ABC-S△AQP-S△PCB,就可以表示出积S与t之间的函数关系式. (3)当BQ=BP时利用勾股定理建立等量关系就可以求出其t值,当BP=QP时,作PM⊥AB,根据等腰三角形的性质就可以求出其t值;当PQ=BQ时,作QN⊥AC,利用三角形相似就可以求出其t值. 【解析】 (1)过点D作DE⊥AB于E, ∵BD平分∠ABC,∠ACB=90°, ∴DE=DC, ∴△BDE≌△BDC, ∴BE=BC,在Rt△ABC中,由勾股定理,得 AB==10, 设CD=x,则AD=8-x,DE=x, ∴16+x2=(8-x)2, ∴x=3, ∴CD=3. (2)作QF⊥AC于F, ∴∠AFQ=90°, ∵∠ACB=90°, ∴QF∥BC, ∴△AQF∽△ABC, ∴, ∴=, ∴QF=, ∴S△BPQ=×6×8--(5+t)•, ∴S=t2+6t, 当S=7.2时, 7.2=t2+6t, 解得,t1=-6(舍去),t2=1; (3)当AQ=AP时,BQ=4t,CP=3-t,在Rt△BPC中,由勾股定理,得 16t2=(3-t)2+36, 解得x1=(舍去),x2=; 当AP=PQ时,t1=1,t2=; 当PQ=AQ时,不存在. ∴t的值为:,1,.
复制答案
考点分析:
相关试题推荐
如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网
(1)请写出线段PG与PC所满足的关系;并加以证明.
(2)若将图①中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图②.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.
(3)若将图①中的菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请猜想(1)中的结论有没有变化?
manfen5.com 满分网
查看答案
如图,亮亮在不打滑的平面轨道上滚动一个半径为10cm的圆盘,其中AB=80cm,BC与水平面的夹角为60°.当圆盘从A点滚到与BC开始相切时停止,设圆盘切BC于点E,切AB于点D.
(1)当圆盘在AB上滚动一圈时,求其圆心所经过的路线长度?(精确到0.1cm)
(2)当圆盘从A点滚到与BC开始相切时,求其圆心O所经过的路线长是多少?(精确到0.1cm)
(3)设斜坡的顶端为点C点,当坡高CF为30cm时,求切点E到顶端C的距离.(精确到0.1cm)

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象相交于点A(-2,1)、点B(1,n).
(1)求此一次函数和反比例函数的解析式;
(2)请直接写出满足不等式manfen5.com 满分网的解集;
(3)若点P是双曲线左支上一动点,过点P的直线与双曲线另一支交于点M,过点P作PE⊥y轴,过点M作MN⊥x轴,垂足分别为E、N,PN与ME交于点D,请判断△PDE与△MDN面积的大小关系,并说明理由.

manfen5.com 满分网 查看答案
某中学为了参加唐山市举办的“保护环境,爱我家园”演讲比赛,先在八(1)班,八(2)班分别选出10名同学进行选拔赛,这些选手的参赛成绩如图1所示:
团体众数平均数方差
八(1)班85.839.36
八(2)班85.831.36
根据图中和上表提供的信息,解答下列问题:
(1)请你把上面的表格填写完整;
(2)请从下列不同角度对这次竞赛成绩的结果进行分析:
①从众数和平均数的角度比较,两个班中整体成绩较好是______班;
②从平均数和方差的角度比较,两个班中整体成绩较好是______班;
(3)图2是本次选拔赛中各分数段的人数与参赛总人数的百分比统计图,其中A:95≤x<100;B:90≤x<95;C:85≤x<90;D:80≤x<85;E:75≤x<80;x代表分数.请仿照图中已有的数据将这个统计图的其它数据补充完整.
(4)假设参加市级比赛的1名选手要在这次选拔赛中成绩高于90分的选手中产生,求这1名选手产生在八(1)班的概率.
manfen5.com 满分网
查看答案
如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.
请按要求完成下列各题:
(1)画AD∥BC(D为格点),连接CD;
(2)试判断△ABC的形状?请说明理由;
(3)若E为BC中点,F为AD中点.四边形AECF是什么特殊的四边形?请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.