由图和条件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直线为y=x+1,Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标,最后根据规律就可以求出B5的坐标.
【解析】
∵点B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直线y=kx+b(k>0)为y=x+1,
∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,
∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
所以B5的坐标是(25-1,24),即(31,16).
故填空答案:(31,16).