满分5 > 初中数学试题 >

如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度...

如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上.
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.
manfen5.com 满分网
(1)可通过构建直角三角形求解.连接FH,则FH∥BE且FH=BE,FH⊥CD.因此三角形DFH为直角三角形. 点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,那么DF=3a-a=2a,DF=2a,FH=a,根据勾股定理就求出了DH的长. (2)设BE=x,△DHE的面积为y,通过三角形DHE的面积=三角形CDE的面积+梯形CDHG的面积-三角形EGH的面积,来得出关于x,y的函数关系式,然后根据函数的性质求出y取最小值时x的值,并求出此时y的值. 【解析】 (1)连接FH,则FH∥BE且FH=BE, 在Rt△DFH中,DF=3a-a=2a,FH=a,∠DFH=90°, 所以,DH==a; (2)设BE=x,△DHE的面积为y, 依题意y=S△CDE+S梯形CDHG-S△EGH =×3a×(3a-x)+×(3a+x)×x-×3a×x =x2-ax+a2 y=x2-ax+a2=(x-a)2+a2 当x=a,即BE=BC,E是BC的中点时,y取最小值,△DHE的面积y的最小值为a2.
复制答案
考点分析:
相关试题推荐
如图,一条抛物线经过原点,且顶点B的坐标(1,-1).
(1)求这个抛物线的解析式;
(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;
(3)设该抛物线的对称轴与x轴的交点为C,请你在抛物线位于x轴上方的图象上求两点E、F,使△ECF为等腰直角三角形,且∠ECF=90°.

manfen5.com 满分网 查看答案
如图,线段AB经过圆心O,交⊙O于A、C两点,点D在⊙O上,∠A=∠B=30°.
(1)求证:BD是⊙O的切线;
(2)若点N在⊙O上,且DN⊥AB,垂足为M,NC=10,求AD的长.

manfen5.com 满分网 查看答案
小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.
(1)玩一次小刚出“石头”的概率是多少?
(2)玩一次小刚胜小明的概率是多少,用列表法或画树状图法加以说明.
查看答案
某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天使按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.
(1)求原计划多少天完成任务?
(2)求提高功效后,y与x之间的函数表达式;
(3)实际完成这项任务比原计划提前了多少天?
manfen5.com 满分网
查看答案
某实验中学甲、乙、丙三个数学兴趣小组制定了一个测量校园物体的方案.于同一时刻在阳光下对标杆及校园中的某些物体进行了测量,下面是他们通过测量得到一些信息:
甲组:如图(1),测得一根直立于平地,长为0.8m的标杆的影长为0.6m.
乙组:如图(2),测得学校水塔的影长为12.6m.
丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗线忽略不计)的高度为2.6m,影长为2.1m,
请根据以上信息解答下列问题.
(1)请根据甲、乙两组得到的信息计算出学校水塔的高度.
(2)如图(3),设太阳光NH与圆O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.