如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离等于______;
(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;
(4)连接PG,当PG∥AB时,直接写出t的值.
考点分析:
相关试题推荐
已知,如图,抛物线经过原点O和点B(m,-3),它的对称轴x=-2与x轴交于点A,直线y=-2x+1与抛物线交于点B,且与y轴、直线x=-2分别交于点D、C.
(1)求m的值及抛物线的解析式;
(2)求证:①AC=AB,②BD=CD;
(3)除B点外,直线y=-2x+1与抛物线有无公共点?并说明理由;
(4)在抛物线上是否存在一点P,使得PB=PC?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案
操作:正方体涂色:如图,用白萝卜做成一个正方体,并把正方体表面涂成灰颜色.
探究:把正方体的棱三等分,然后沿等分线把正方体切开,得到27块小正方体.
(1)①两面涂色的小正方体有______个;若把正方体的棱n(n≥2的整数)等分,然后沿等分线把正方体切开,得到若干个小正方体,其中两面涂色的小正方体有______个.
②若把上述小正方体表面各面无涂色、一面涂色、两面涂色、三面涂色分别记作:0,1,2,3,请写出这27个数据的众数是______.
应用:
(2)①小明从上述的27块萝卜中任取一块,求只有两面涂色的概率.
②小明和弟弟在做游戏,规则是:从上述的27块萝卜中任取一块,若他有奇数个面涂色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?
查看答案
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
查看答案
我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:
超市 态度 | A | B | C | 合计 |
赞同 | 20 | 75 | 55 | 150 |
不赞同 | 23 | | 17 | |
无所谓 | 57 | 20 | 28 | 105 |
(1)此次共调查了多少人?
(2)请将图表补充完整;
(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度?
查看答案
如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.
查看答案