满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是A...

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离等于______
(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;
(4)连接PG,当PG∥AB时,直接写出t的值.

manfen5.com 满分网
(1)由中位线定理即可求出DF的长; (2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值; (3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值; ②当点P在FC上(5≤t≤7)时,PB+PF=BF就可以得到; (4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t. 【解析】 (1)Rt△ABC中,∠C=90°,AB=50, ∵D,F是AC,BC的中点, ∴DE∥BC,EF∥AC,∴DF=AB=25 (2)能. 如图1,连接DF,过点F作FH⊥AB于点H, ∵D,F是AC,BC的中点, ∴DE∥BC,EF∥AC,四边形CDEF为矩形, ∴QK过DF的中点O时,QK把矩形CDEF分为面积相等的两部分 (注:可利用全等三角形借助割补法或用中心对称等方法说明), 此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16. 故t=. (3)①当点P在EF上(2≤t≤5)时, 如图2,QB=4t,DE+EP=7t, 由△PQE∽△BCA,得. ∴t=4; ②当点P在FC上(5≤t≤7)时, 如图3,已知QB=4t,从而PB=5t, 由PF=7t-35,BF=20,得5t=7t-35+20. 解得t=7; (4)如图4,t=1;如图5,t=7. (注:判断PG∥AB可分为以下几种情形: 当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻, 如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB; 当5≤t≤7时,点P,G均在FC上,也不存在, PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻, 如图5,当8≤t≤10时,点P,G均在CD上,不存在PG∥AB).
复制答案
考点分析:
相关试题推荐
已知,如图,抛物线经过原点O和点B(m,-3),它的对称轴x=-2与x轴交于点A,直线y=-2x+1与抛物线交于点B,且与y轴、直线x=-2分别交于点D、C.
(1)求m的值及抛物线的解析式;
(2)求证:①AC=AB,②BD=CD;
(3)除B点外,直线y=-2x+1与抛物线有无公共点?并说明理由;
(4)在抛物线上是否存在一点P,使得PB=PC?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
操作:正方体涂色:如图,用白萝卜做成一个正方体,并把正方体表面涂成灰颜色.
探究:把正方体的棱三等分,然后沿等分线把正方体切开,得到27块小正方体.
(1)①两面涂色的小正方体有______个;若把正方体的棱n(n≥2的整数)等分,然后沿等分线把正方体切开,得到若干个小正方体,其中两面涂色的小正方体有______个.
②若把上述小正方体表面各面无涂色、一面涂色、两面涂色、三面涂色分别记作:0,1,2,3,请写出这27个数据的众数是______
应用:
(2)①小明从上述的27块萝卜中任取一块,求只有两面涂色的概率.
②小明和弟弟在做游戏,规则是:从上述的27块萝卜中任取一块,若他有奇数个面涂色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?

manfen5.com 满分网 查看答案
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
查看答案
我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:
超市
态度
ABC合计
赞同207555150
不赞同2317
无所谓572028105
(1)此次共调查了多少人?
(2)请将图表补充完整;
(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度?

manfen5.com 满分网 查看答案
如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.