满分5 > 初中数学试题 >

已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠...

已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠BED=∠BAC=2∠DEC,连接CE.
(1)求证:∠ABE=∠DAC;
(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;
(3)若∠BAC=α,那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.
(1)根据外角的性质,推出∠BED=∠ABE+∠BAE,由∠BAC=∠BAE+∠DAC,根据∠BED=∠BAC进行等量代换即可; (2)在AD上截取AF=BE,连接CF,作CG∥BE交直线AD于G,∠BED=∠BAC,结合(1)所推出的结论,求证△ACF≌△BAE,根据全等三角形的性质、三角形内角和定理推出∠CFG=180°-∠AFC=180°-∠BEA=∠BED,由CG∥BE,可得∠CGF=∠BED,BD:CD=BE:CG,继而推出∠CFG=∠CGF,即CG=CF,通过等量代换可得BE=AF=2CF,把比例式中的BE、CG用2CF、CF代换、整理后即可推出BD=2DC,总上所述BD与CD的数量关系与∠BAC的度数无关; (3)根据(2)所推出的结论即可推出若∠BAC=α,那么(2)中的结论仍然还成立. (1)证明:∵∠BED=∠ABE+∠BAE,∠BED=∠BAC, ∴∠ABE+∠BAE=∠BAC, ∵∠BAC=∠BAE+∠DAC, ∴∠DAC=∠ABE; (2)【解析】 在AD上截取AF=BE,连接CF,作CG∥BE交直线AD于G,∠BED=∠BAC, ∵∠FAC=∠ABE, ∴在△ACF和△BAE中, , ∴△ACF≌△BAE(SAS), ∴CF=AE,∠ACF=∠BAE,∠AFC=∠AEB. ∵∠ACF=∠BAE,∠AFC=∠BEA, ∴∠CFG=180°-∠AFC=180°-∠BEA=∠BED, ∵CG∥BE, ∴∠CGF=∠BED, ∴∠CFG=∠CGF, ∴CG=CF, ∵∠BED=2∠DEC, ∵∠CFG=∠DEC+∠ECF,∠CFG=∠BED, ∴∠ECF=∠DEC, ∴CF=EF, ∴BE=AF=2CF, ∵CG∥BE, ∴BD:CD=BE:CG, ∴BD:CD=2CF:CF=2, ∴BD=2DC, ∴BD与CD的数量关系与∠BAC的度数无关; (3)【解析】 ∵BD与CD的数量关系与∠BAC的度数无关, ∴若∠BAC=α,那么(2)中的结论仍然还成立.
复制答案
考点分析:
相关试题推荐
一服装经销商计划购进某品牌的A型、B型、C型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A型服装x套,B型服装y套,三款服装的进价和预售价如下表:
服装型号A型B型C型
进价(元/套)90012001100
预售价(元/套)120016001300
(1)如果所购进的A型服装与B型服装的费用不超过39000元,购进B型服装与C型服装的费用不超过34000元,那么购进三款服装各多少套?
(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(套)的函数关系式;(注:预估利润P=预售总额-购服装款-各种费用)
②求出预估利润的最大值,并写出此时购进三款服装各多少套.
查看答案
请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=manfen5.com 满分网,由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.manfen5.com 满分网
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
查看答案
在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y,试求x+y是10的倍数的概率.
manfen5.com 满分网
查看答案
如图,已知⊙O的半径为R,AB是⊙O的直径,C是manfen5.com 满分网的中点,动点M在manfen5.com 满分网上运动(不与B、C重合),AM交OC于点P,OM与PB交于点N.
(1)求证:AP•AM是定值;
(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM⊥PB.并加以证明.

manfen5.com 满分网 查看答案
如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120度.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.