已知抛物线y=ax
2+bx+3交x轴于点A(x
1,0)、B(-1,0)且x
1>0,OA
2+OB
2=10,抛物线交y轴于点C.
(1)求抛物线的解析式;
(2)第一象限内,在抛物线上是否存在一点E,使∠ECO=∠ACB?若存在,求出点E的坐标;
(3)直线y=kx(k<0)交直线y=x-3于P,交(1)中抛物线于M,过M作x轴的垂线,垂足为D,交直线y=x-3于N.问:△PMN能否为等腰三角形?若能,求出k的值;若不能,说明理由.
考点分析:
相关试题推荐
如图,△ABC中,AD为中线,E为边BC上一点,过E作EF∥AB交AC于F,交AD于M,EG∥AC交AB于G.
(1)如图1,若E与D重合,写出图中所有与FG相等的线段,并选取一条给出证明.
(2)如图纸,若E与D不重合,在(1)中与FG相等的线段中找出一条仍然与FG相等的线段,并给出证明.
(3)如图3,若E在BC的延长线上,其它条件不变,作出图形(不写作法),FG=______.
查看答案
某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低l元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)指出单价定为多少元时日均获利最多,是多少?
(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?
查看答案
如图,△ABC内接于⊙O,且AB=AC,D是
上一点,AD与BC交于E,AF⊥DB,垂足为F.
(1)求证:∠ADB=∠CDE;
(2)若AF=DC=6,AB=10,求△DBC的面积.
查看答案
如图,△ABC中,A(1,-1)、B(1,-3)、C(4,-3).
(1)△A
1B
1C
1是△ABC关于y轴的对称图形,则点A的对称点A
1的坐标是______;
(2)将△ABC绕点(0,1)逆时针旋转90°得到△A
2B
2C
2,则B点的对应点B
2的坐标是______;
(3)△A
1B
1C
1与△A
2B
2C
2是否关于某条直线成轴对称?若成轴对称,则对称轴的解析式是______.
查看答案
四张相同的卡片上分别标有数字1、2、3、4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.
(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;
(2)计算抽得的两张卡片上的数字之和大于4的概率是多少?
查看答案