满分5 >
初中数学试题 >
若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(5,y...
若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(5,y3),则y1,y2,y3的大小关系是( )
A.y1>y2>y3
B.y1>y3>y2
C.y2>y1>y3
D.y3>y1>y2
考点分析:
相关试题推荐
若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为( )
A.2:1
B.1:2
C.4:1
D.1:4
查看答案
如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
查看答案
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
查看答案
某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
查看答案
如图,AB是半圆O上的直径,E是
的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F.已知BC=8,DE=2.
(1)求⊙O的半径;
(2)求CF的长;
(3)求tan∠BAD的值.
查看答案