某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:
(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长.
(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
阅读后回答下列问题:
(1)方案(I)是否可行?______,理由是______;
(2)方案(II)是否切实可行?______,理由是______.
(3)方案(II)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n•CD,能否测得(或求出)AB的长?理由是______,若ED=m,则AB=______.
考点分析:
相关试题推荐
如图,抛物线y=x
2+bx+c经过A(-1,O),B(4,5)两点,请解答下列问题:
(1)求抛物线的解析式;
(2)若抛物线的顶点为点D,对称轴所在的直线交x轴于点E,连接AD,点F为AD的中点,求出线段EF的长.
注:抛物线y=ax
2+bx+c的对称轴是x=-
,顶点坐标是(-
,
)
查看答案
如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1).
(1)求经过A、B、C三点的抛物线的表达式;
(2)以P为位似中心,将△ABC放大,使得放大后的△A
1B
1C
1与△OAB对应线段的比为3:1,请在右图网格中画出放大后的△A
1B
1C
1;(所画△A
1B
1C
1与△ABC在点P同侧);
(3)经过A
1、B
1、C
1三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
查看答案
某宾馆有若干间住房,住宿记录提供了如下信息:①4月2日全部住满,一天住宿费收入为3600元;②4月3日有10间房空着,一天住宿费收人为2800元;③该宾馆每间房每天收费标准相同.
(1)求该宾馆共有多少间住房,每间住房每天收费多少元?
(2)通过市场调查发现,每个住房每天的定价每增加10元,就会有一个房间空闲;己知该宾馆空闲房间每天每间费用10元,有游客居住房间每天每间再增加20元的其他费用,问房价定为多少元时,该宾馆一天的利润最大?
查看答案
在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.
查看答案
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.
(1)写出图中两对相似三角形(不得添加字母和线);
(2)请分别说明两对三角形相似的理由.
查看答案