上课时老师出示了下面的题目:
如图1,正△ABC中,P为BC上一点,作PE⊥AB,PF⊥AC,BG⊥AC,垂足分别为E,F,G.
求证:PE+PF=BG.
喜欢思考的小明,给出了如下证法:
证明:连接AP,∵S
△ABC=S
△ABP+S
△ACP又PE⊥AB,PF⊥AC,BG⊥AC
∴
∵AB=AC
∴BG=PE+PF
老师非常赞赏,面积法证明本题真简洁!老师又引导学生继续探索.
(1)当点P在CB延长线上时,上述结论是否成立?若不成立,探究三条线段之间PE,PF,BG之间的数量关系.写出猜想,不要求证明.
(2)①将“P为BC上一点”改成”P为正△ABC内一点”,作PE⊥AB,PF⊥AC,PM⊥BC,BG⊥AC,垂足分别为E,F,M,G.有类似结论吗?请写出结论并证明.
②若点P在如图所示的位置时,①的结论是否成立?试探究四条线段PE,PF,PM,BG的数量关系.
查看答案