满分5 > 初中数学试题 >

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以...

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)依题意推出AB=BC=CD=AD,连接PM,根据勾股定理求出OM的值后可求出点M的坐标; (2)本题有多种方法解答.首先连接PC,CM,根据勾股定理先求出CM的值,然后证明△CMP≌△CPB即可证得∠CMP=∠CBP=90°; (3)本题有几种解法,符合题意即可,首先作M点关于x轴的对称点M',连接M'C,根据题意可知QM+QC的和最小,因为MC为定值,故△QMC的周长最小,证明△M'OQ∽△M'EC,利用线段比求出OQ的值. 【解析】 (1)∵A(-2,0),B(8,0),四边形ABCD是正方形, ∴AB=BC=CD=AD=10,⊙P的半径为5,(1分) C(8,10),(2分) 连接PM,PM=5,在Rt△PMO中, ∴M(0,4);(3分) (2)方法一:直线CM是⊙P的切线.(4分) 证明:连接PC,CM,如图(1), 在Rt△EMC中,(5分) ∴CM=CB 又∵PM=PB,CP=CP ∴△CPM≌△CPB(6) ∴∠CMP=∠CBP=90° CM是⊙P的切线;(7分) 方法二:直线CM是⊙P的切线.(4分) 证明:连接PC,如图(1),在Rt△PBC中, PC2=PB2+BC2=52+102=125(5分) 在Rt△MEC中 ∴CM2=CE2+ME2=82+62=100(6分) ∴PC2=CM2+PM2 ∴△PMC是直角三角形,即∠PMC=90° ∴直线CM与⊙P相切.(7分) 方法三:直线CM是⊙P的切线.(4分) 证明:连接MB,PM如图(2), 在Rt△EMC中,(5) ∴CM=CB ∴∠CBM=∠CMB(6) ∴PM=PB∴∠PBM=∠PMB ∴∠PMB+∠CMB=∠PBM+∠CBM=90° 即PM⊥MC ∴CM是⊙P的切线;(7分) (3)方法一:作M点关于x轴的对称点M',则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) ∵△M'OQ∽△M′EC ∴(9分) ∴;(10分) 方法二:作M点关于x轴的对称点M′,则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) 设直线M'C的解析式为y=kx+b, 把M′(0,-4)和C(8,10)分别代入得, 解得 ∴,当y=0时,(9分) ∴.(10分)
复制答案
考点分析:
相关试题推荐
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
manfen5.com 满分网
查看答案
如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,
(1)求证:AB∥CD;
(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AB=10cm,BC=16cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时点Q从点B沿边BC向点C以2cm/s的速度移动,
(1)几秒后△PBQ的面积等于9cm2
(2)在P、Q移动的过程中,∠DQP能否为直角?若能,求出时间,若不能,说明理由.

manfen5.com 满分网 查看答案
某商场将某种商品的售价从原来每件40元经两次调价后调至每件32.4元,
(1)若该商场两次调价的百分率相同,求这个百分率.
(2)经调查,该商品每降价0.2元,即可多售10件,若该商品原来每月可售500件,求第一次调价后可售多少件?
查看答案
如图⊙O中,AB是直径,AC和AD是弦,且AD平分∠BAC,过D作AC的垂线交AC的延长线于E,
(1)求证:DE是⊙O的切线.
(2)若AE=4,AB=5,求AD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.