满分5 > 初中数学试题 >

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点...

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.

manfen5.com 满分网
(1)作PM⊥OA于M,则PM∥OB,再根据平行线分线段成比例定理列出比例式;由勾股定理求出AB=5,而AP=t,根据比例式求出AM、PM的值,P点坐标即可得到; (2)根据三角形的面积公式,P点纵坐标与OQ的长度的积的一半就是△OPQ面积,整理后根据二次函数的最值问题求解即可; (3)作OQ边上的高,根据△PON和△QPN相似,相似三角形对应边成比例,列式求解. 【解析】 (1)作PM⊥OA于M,则PM∥OB, ∴AM:AO=PM:BO=AP:AB, ∵OA=3cm,OB=4cm, ∴在Rt△OAB中,AB===5cm, ∵AP=1•t=t, ∴, ∴PM=t,AM=t, ∴OM=OA-AM=3-t, ∴点P的坐标为( t,3-t); (2)∵OQ=1•t=tcm, ∴S△OPQ=×t×(3-t)=-t2+t=-(t-)2+, ∴当t=s时,S有最大值,最大值为 cm2; (3)存在. 理由:作PN⊥OB于N, ∵△OPQ为直角三角形, ∴△PON∽△QPN, ∴, ∴(3-t)2=t(t-t), 解得t1=3,t2=15(舍去); ∴当t=3s时,△OPQ为直角三角形.
复制答案
考点分析:
相关试题推荐
如图,大圆O的半径OC是小圆O1的直径,且有OC垂直于圆O的直径AB.圆O1的切线AD交OC的延长线于点E,切点为D.
(1)试探究CD与AO1的位置关系,并说明理由;
(2)若DE=4,CE=2,求AD的长.

manfen5.com 满分网 查看答案
利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-manfen5.com 满分网的图象(如图所示),利用图象求方程manfen5.com 满分网-x+3=0的近似解.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.
九(3)班“绿色奥运”知识竞赛成绩频数分布表:
(1)频数分布表中a=______,b=______
(2)把频数分布直方图补充完整;
(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.
分数段(分)49.5~59.559.5~69.569.5~79.579.5~89.589.5~99.5
组中值(分)54.564.574.584.594.5
频数a910145
所占百分比5%22.5%25.0%35.0%b

查看答案
如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)

manfen5.com 满分网 查看答案
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.