考点分析:
相关试题推荐
如图1,矩形CEFG的一边落在矩形ABCD的一边上,并且矩形CEFG~CDAB,其相似比为k,连接BG、DE.
(1)试探究BG、DE的位置关系,并说明理由;
(2)将矩形CEFG绕着点C按顺时针(或逆时针)旋转任意角度α,得到图形2、图形3,请你通过观察、分析、判断(1)中得到的结论是否能成立,并选取图2证明你的判断;
(3)在(2)中,矩形CEFG绕着点C旋转过程中,连接BD、BF、DF,且k=
,AB=8,BC=4,△BDF的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.
查看答案
已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm
2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.
查看答案
如图,大圆O的半径OC是小圆O
1的直径,且有OC垂直于圆O的直径AB.圆O
1的切线AD交OC的延长线于点E,切点为D.
(1)试探究CD与AO
1的位置关系,并说明理由;
(2)若DE=4,CE=2,求AD的长.
查看答案
利用图象解一元二次方程x
2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x
2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x
2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-
的图象(如图所示),利用图象求方程
-x+3=0的近似解.(结果保留两个有效数字)
查看答案
九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.
九(3)班“绿色奥运”知识竞赛成绩频数分布表:
(1)频数分布表中a=______,b=______;
(2)把频数分布直方图补充完整;
(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.
分数段(分) | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~99.5 |
组中值(分) | 54.5 | 64.5 | 74.5 | 84.5 | 94.5 |
频数 | a | 9 | 10 | 14 | 5 |
所占百分比 | 5% | 22.5% | 25.0% | 35.0% | b |
查看答案