满分5 > 初中数学试题 >

如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( ) A. ...

如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
利用等腰梯形的性质和勾股定理的有关知识来解决此类题. 【解析】 过点B作BE⊥AD于E,过O作OF⊥CB,连接OB, ∵OF⊥CB, ∴BF=BC=1, ∴OE=1, 设AE=x, ∵OA、OB是⊙O的半径, ∴OB=OA=x+1, 根据勾股定理,AB2-AE2=OB2-OE2, 得12-x2=(x+1)2-12, 整理,得2x2+2x-1=0, 解得x=, 故OA=AE+OE=+1=. 故选A.
复制答案
考点分析:
相关试题推荐
边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形ABC′D′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个风筝的面积是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2
查看答案
甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网 查看答案
如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=manfen5.com 满分网BD,EN=manfen5.com 满分网CE,得到图③,请解答下列问题:
manfen5.com 满分网
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是______
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
查看答案
如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=manfen5.com 满分网,求矩形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.