满分5 > 初中数学试题 >

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴...

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网
(1)设直线DE的解析式为y=kx+b,直接把点D,E代入解析式利用待定系数法即可求得直线DE的解析式,先根据矩形的性质求得点M的纵坐标,再代入一次函数解析式求得其横坐标即可; (2)利用点M求得反比例函数的解析式,根据一次函数求得点N的坐标,再代入反比例函数的解析式判断是否成立即可; (3)满足条件的最内的双曲线的m=4,最外的双曲线的m=8,所以可得其取值范围. 【解析】 (1)设直线DE的解析式为y=kx+b, ∵点D,E的坐标为(0,3)、(6,0), ∴, 解得k=-,b=3; ∴; ∵点M在AB边上,B(4,2),而四边形OABC是矩形, ∴点M的纵坐标为2; 又∵点M在直线上, ∴2=; ∴x=2; ∴M(2,2); (2)∵(x>0)经过点M(2,2), ∴m=4; ∴; 又∵点N在BC边上,B(4,2), ∴点N的横坐标为4; ∵点N在直线上, ∴y=1; ∴N(4,1); ∵当x=4时,y==1, ∴点N在函数的图象上; (3)当反比例函数(x>0)的图象通过点M(2,2),N(4,1)时m的值最小,当反比例函数(x>0)的图象通过点B(4,2)时m的值最大, ∴2=,有m的值最小为4, 2=,有m的值最大为8, ∴4≤m≤8.
复制答案
考点分析:
相关试题推荐
某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:
A、从一个社区随机选取200名居民;
B、从一个城镇的不同住宅楼中随机选取200名居民;
C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.
(1)在上述调查方式中,你认为比较合理的一个是______(填番号).
(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?
(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?
(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-2x-3=0.
查看答案
两个反比例函数y=manfen5.com 满分网,y=manfen5.com 满分网在第一象限内的图象如图所示,点P1,P2,P3,…,P2010在反比例函数y=manfen5.com 满分网图象上,它们的横坐标分别是x1,x2,x3,…,x2010,纵坐标分别是1,3,5,…,共2010个连续奇数,过点P1,P2,P3,…,P2010分别作y轴的平行线,与y=manfen5.com 满分网的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2010(x2010,y2010),则y2010=   
manfen5.com 满分网 查看答案
如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac中正确的是(填写序号)   
manfen5.com 满分网 查看答案
如图,在正方形ABCD中,AB=4,0为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙02,则图中阴影部分的面积=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.