满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),...

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

manfen5.com 满分网
(1)因为抛物线过A、B、C三点,所以此三点的坐标使抛物线的解析式成立. (2)①此题要分作两种情况进行讨论: 一、当P点位于原点左侧,线段OA上;此时0≤t<1,可用t表示出OP、BP的长,欲求△BPF的面积,关键要求出BP边上的高,可过F作FD⊥x轴于D;由于∠CPF=90°,易证得△OPC∽△DFP,根据已知条件可知PF=PE=2PC,即两个相似三角形的相似比为2,那么DF=2OP,由此可得到DF的长,以BP为底,DF为高,即可求得△BPF的面积表达式,也就得到了关于S、t的函数关系式; 二、当P点位于原点右侧,线段BP上;此时1<t<6,可仿照一的方法进行求解; ②根据①得到的S、t的函数关系式,及相应的自变量的取值范围,即可根据函数的性质求得S的最大值及对应的t值,然后进行比较即可得到结果. (3)当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论: ①F为直角顶点,过F作FD⊥x轴于D,由(2)可知BP=6-t,DP=2OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t2-2t+5,那么PF2=(2CP)2=4(t2-2t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即t=; ②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2. 【解析】 (1)(法一)设抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(5,0),C(0,2)三点代入解析式得:, 解得; ∴;(3分) (法二)设抛物线的解析式为y=a(x-5)(x+1), 把(0,2)代入解析式得:2=-5a, ∴; ∴, 即;(3分) (2)①过点F作FD⊥x轴于D, 当点P在原点左侧时,BP=6-t,OP=1-t; 在Rt△POC中,∠PCO+∠CPO=90°, ∵∠FPD+∠CPO=90°, ∴∠PCO=∠FPD; ∵∠POC=∠FDP, ∴△CPO∽△PFD,(5分) ∴; ∵PF=PE=2PC, ∴FD=2PO=2(1-t);(6分) ∴S△PBF==t2-7t+6(0≤t<1);(8分) 当点P在原点右侧时,OP=t-1,BP=6-t; ∵△CPO∽△PFD,(9分) ∴FD=2(t-1); ∴S△PBF==-t2+7t-6(1<t<6);(11分) ②当0≤t<1时,S=t2-7t+6; 此时t在t=3.5的左侧,S随t的增大而减小,则有: 当t=0时,Smax=0-7×0+6=6; 当1<t<6时,S=-t2+7t-6; 由于1<3.5<6,故当t=3.5时,Smax=-3.5×3.5+7×3.5+6=6.25; 综上所述,当t=3.5时,面积最大,且最大值为6.25. (3)能;(12分) ①若F为直角顶点,过F作FD⊥x轴于D,由(2)可知BP=6-t,DP=2OC=4, 在Rt△OCP中,OP=t-1, 由勾股定理易求得CP2=t2-2t+5,那 么PF2=(2CP)2=4(t2-2t+5); 在Rt△PFB中,FD⊥PB, 由射影定理可求得PB=PF2÷PD=t2-2t+5, 而PB的另一个表达式为:PB=6-t, 联立两式可得t2-2t+5=6-t,即t=, P点坐标为(,0), 则F点坐标为:(,-1); ②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2, 那么BP=2OC=4,即OP=OB-BP=1,此时t=2, P点坐标为(1,0).FD=2(t-1)=2, 则F点坐标为(5,2).(14分)
复制答案
考点分析:
相关试题推荐
如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长,交AD的延长线于F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)过点D作DG∥BE交EF于点G,过G作GH∥DE交DF于点H,则易知△DHG是等边三角形;设等边△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的数量关系,并说明理由.

manfen5.com 满分网 查看答案
我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出manfen5.com 满分网的值(用含α的三角函数表示).
manfen5.com 满分网
查看答案
如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为ya,yb,yc(单位:升),时间为t(单位:分).开始时,B容器内有水50升,yayc与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:
(1)求t=3时,yb的值.
(2)求yb与t的函数关系式,并在图2中画出其函数图象.
(3)求ya:yb:yc=2:3:4时t的值.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网 查看答案
某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:
A、从一个社区随机选取200名居民;
B、从一个城镇的不同住宅楼中随机选取200名居民;
C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.
(1)在上述调查方式中,你认为比较合理的一个是______(填番号).
(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?
(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?
(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.