满分5 > 初中数学试题 >

如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥B...

如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=manfen5.com 满分网,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为______

manfen5.com 满分网
(1)要证明DE是⊙O的切线,已知OD是圆的半径,只要证明OD⊥DE即可. (2)根据勾股定理可求得BC的长,从而可求得AB,DE的长,再根据勾股定理即可求得OE的长. (3)由第二问可知OE的长,根据题意不难求得圆E的半径r的取值范围. (1)证明:连接BD、OD, ∵AB是直径, ∴∠ADB=90°, 又∵AB=BC, ∴AD=CD. ∵AO=BO, ∴OD是△ABC的中位线, ∴OD∥BC. ∵DE⊥BC, ∴OD⊥DE, ∴DE是⊙O的切线. (2)【解析】 在Rt△CBD中,CD=,∠ACB=30° ∴BC==2, ∴BD=1,AB=2, 在Rt△CDE中,CD=,∠ACB=30° ∴DE=CD=,BC==2 ∵OD是圆O半径, ∴OD=1, ∴OE==. (3)【解析】 如图, 当圆E的半径为-1时,OG=1; 当圆E的半径为+1时,OG=1, 故.
复制答案
考点分析:
相关试题推荐
安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长.
(参考数据:tan18°≈manfen5.com 满分网,tan32°≈manfen5.com 满分网,tan40°≈manfen5.com 满分网).

manfen5.com 满分网 查看答案
“五一”期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2所示的频数分布直方图.
manfen5.com 满分网manfen5.com 满分网
(1)补齐频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?
查看答案
已知关于x的一元二次方程x2-6x+k=0有两个实数根.
(1)求k的取值范围;
(2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.
查看答案
小明在考试时看到一道这样的题目:“先化简manfen5.com 满分网,再其求值.”小明代入某个数后求得其值为3.你能确定小明代入的是哪一个值吗?你认为他代入的这个值合适吗?为什么?
查看答案
如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.