满分5 > 初中数学试题 >

如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO. (1...

manfen5.com 满分网如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=manfen5.com 满分网,求△ACF的面积.
(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线; (2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解. (1)证明:连接BO,(1分) 方法一:∵AB=AD ∴∠D=∠ABD ∵AB=AO ∴∠ABO=∠AOB(2分) 又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180° ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线;(3分) 方法二:∵AB=AO,BO=AO ∴AB=AO=BO ∴△ABO为等边三角形 ∴∠BAO=∠ABO=60° ∵AB=AD ∴∠D=∠ABD 又∠D+∠ABD=∠BAO=60° ∴∠ABD=30°(2分) ∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO ∴BD是⊙O的切线; 方法三:∵AB=AD=AO ∴点O、B、D在以OD为直径的⊙A上 ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线; (2)【解析】 ∵∠C=∠E,∠CAF=∠EBF ∴△ACF∽△BEF ∵AC是⊙O的直径 ∴∠ABC=90° 在Rt△BFA中,cos∠BFA= ∴ 又∵S△BEF=8 ∴S△ACF=18.
复制答案
考点分析:
相关试题推荐
阅读下列材料:
将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)
请你参考以上做法解决以下问题:
(1)将图4的平行四边形分割成面积相等的八个三角形;
(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.manfen5.com 满分网
查看答案
解不等式组manfen5.com 满分网.并把解集在数轴上表示出来.

manfen5.com 满分网 查看答案
计算:2sin60°-manfen5.com 满分网+manfen5.com 满分网-(-1)2010
查看答案
在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则manfen5.com 满分网=    (用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为   
manfen5.com 满分网 查看答案
已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.