操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
考点分析:
相关试题推荐
坐落在伊丽莎白港的曼德拉海湾球场是2010年南非世界杯的比赛场地之一,这座球场就是以南非黑人领袖纳尔逊-曼德拉来命名的.某公司承担该球场草坪的铺设和养护任务,计划用A、B两种草皮共5000块,其中比赛期间的养护费用按一次性计算,赛事组委会要求A、B两种草皮的铺设块数必须是100的倍数,该公司所筹铺设资金不少于23500美元,但不超过24000美元,此两种类型草皮的成本和养护费如下表:
类 型 | A | B |
成本(美元/块) | 5 | 4 |
养护费(美元/块) | 0.2 | 0.15 |
(1)请你为该公司设计铺设的可行性方案?
(2)你认为该公司如何进行铺设所花费用最少?
(3)根据市场调查,B型草皮的成本不会改变,A型草皮的成本将会下降m元(m>0),该公司应该如何进行铺设所花费用最少?(注:费用=成本+养护费)
查看答案
在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,作如下探究:
探究一:若点B的坐标为(1,2),请在图1中作出平移后的像,则点C的坐标是______;连接AC,BO,请判断O,A,C,B四点构成的图形的形状,并说明理由;
探究二:若点B的坐标为(6,2),按探究一的方法,判断O,A,B,C四点构成的图形的形状.
(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
(2)通过上面的探究,请直接回答下列问题:
①若已知三点A(a,b),B(c,d),C(a+c,b+d),顺次连接O,A,C,B,请判断所得到的图形的形状;
②在①的条件下,如果所得到的图形是菱形或者是正方形,请选择一种情况,写出a,b,c,d应满足的关系式.
查看答案
如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系,该圆弧所在圆的圆心为点D.
(1)写出点的坐标:C______、D______;
(2)⊙D的半径=______
查看答案
如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距5km处.现有一艘轮船正沿该航线自西向东航行,在C点观测到点A位于南偏东54°方向,航行10分钟后,在D点观测到点B位于北偏东70°方向.
(1)求观测点B到航线l的距离;
(2)求该轮船航线的速度(结果精确到0.1km/h) 参考数据:
=1.73,sin54°=0.81,cos54°=0.59,tan54°=1.38,sin70°=0.94,cos70°=0.34,tan70°=2.75.
查看答案
已知关于x的方程x
2-(k+2)x+
k
2+1=0
(1)k取什么值时,方程有两个不相等的实数根?
(2)如果方程的两个实数根x
1、x
2(x
1<x
2)满足x
1+|x
2|=3,求k的值和方程的两根.
查看答案