满分5 > 初中数学试题 >

如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x...

如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2manfen5.com 满分网),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;
(3)设PQ与OB交于点M.
①当△OPM为等腰三角形时,求(2)中S的值. 
②探究线段OM长度的最大值是多少,直接写出结论.

manfen5.com 满分网
(1)由图知图形很特殊,利用直线的平行关系,求出直角,在直角三角形中解题,从而求出OH的长; (2)由几何关系求出P点坐标,将△OPQ的面积为S用t来表示,转化为求函数最值问题; (3)思维要严密,△OPM为等腰三角形时,要分三种情况来讨论;最后一问求出M点坐标,同样转化为函数最值问题. 【解析】 (1)∵AB∥OC ∴∠OAB=∠AOC=90° 在Rt△OAB中,AB=2,AO=2 ∴OB=4,tan∠ABO=, ∴∠ABO=60°, ∵AB∥OC ∴∠BOC=60° 又∵∠BCO=60° ∴△BOC为等边三角形 ∴OH=OBcos30°=4×=2; (2)∵OP=OH-PH=2-t ∴xp=OPcos30°=3-t, yp=OPsin30°=-t. ∴S=•OQ•xp=•t•(3-t) =(o<t<2) 即S=- ∴当t=时,S最大=; (3)①若△OPM为等腰三角形,则: (i)若OM=PM,∠MPO=∠MOP=∠POC ∴PQ∥OC ∴OQ=yp即t=- 解得:t= 此时S= (ii)若OP=OM,∠OPM=∠OMP=75°,∴∠OQP=45° 过P点作PE⊥OA,垂足为E,则有:EQ=EP 即t-(-t)=3-t 解得:t=2 此时S= (iii)若OP=PM,∠POM=∠PMO=∠AOB,∴PQ∥OA 此时Q在AB上,不满足题意. ②线段OM长的最大值为.
复制答案
考点分析:
相关试题推荐
华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量y1(万件)与纪念品的价格x(元/件)之间的函数图象如图所示,该公司纪念品的生产数量y2(万件)与纪念品的价格x(元/件)近似满足函数关系式y2=-manfen5.com 满分网x+85.若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:
(1)求y1与x的函数关系式,并写出x的取值范围;
(2)当价格x为何值时,使得纪念品产销平衡(生产量与销售量相等);
(3)当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?

manfen5.com 满分网 查看答案
小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.
manfen5.com 满分网
查看答案
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
(1)求证:AD是半圆O的切线;
(2)若BC=2,CE=manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率;
(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.
查看答案
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.