华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量y
1(万件)与纪念品的价格x(元/件)之间的函数图象如图所示,该公司纪念品的生产数量y
2(万件)与纪念品的价格x(元/件)近似满足函数关系式y
2=-
x+85.若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:
(1)求y
1与x的函数关系式,并写出x的取值范围;
(2)当价格x为何值时,使得纪念品产销平衡(生产量与销售量相等);
(3)当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?
考点分析:
相关试题推荐
小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△EFD纸片的直角顶点D落在△ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.
(1)若ED与BC相交于点G,取AG的中点M,连接MB、MD,当△EFD纸片沿CA方向平移时(如图3),请你观察、测量MB、MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;
(2)在(1)的条件下,求出∠BMD的大小(用含α的式子表示),并说明当α=45°时,△BMD是什么三角形;
(3)在图3的基础上,将△EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△CGD变成△CHD,同样取AH的中点M,连接MB、MD(如图4),请继续探究MB与MD的数量关系和∠BMD的大小,直接写出你的猜想,不需要证明,并说明α为何值时,△BMD为等边三角形.
查看答案
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
(1)求证:AD是半圆O的切线;
(2)若BC=2,CE=
,求AD的长.
查看答案
A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率;
(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.
查看答案
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
查看答案
为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:
(1)这次调查的购物者总人数是______;
(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是______度,0.3元部分所对应的圆心角是______度;
(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.
查看答案