满分5 > 初中数学试题 >

已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC...

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明.
manfen5.com 满分网
(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC. (2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF. (3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cosAC. (1)证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, ∴AB=AD=AC, ∴AB+AD=AC. (2)【解析】 成立. 证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F, ∵AC平分∠MAN, ∴CE=CF, ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, ∵∠CED=∠CFB=90°, ∴△CED≌△CFB, ∴ED=FB, ∴AB+AD=AF+BF+AE-ED=AF+AE,由(1)知AF+AE=AC, ∴AB+AD=AC, 证法二:如图,在AN上截取AG=AC,连接CG, ∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG, ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°, ∴∠CBG=∠ADC, ∴△CBG≌△CDA, ∴BG=AD, ∴AB+AD=AB+BG=AG=AC; (3)证明:由(2)知,ED=BF,AE=AF, 在Rt△AFC中,cos∠CAF=, 即cos, ∴AF=ACcos, ∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=2cosAC. 把α=60°,代入得AB+AD=AC.
复制答案
考点分析:
相关试题推荐
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.
(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.

manfen5.com 满分网 查看答案
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?
查看答案
城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)求tan∠BOA的值;
(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;
(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,则PB=______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.