满分5 > 初中数学试题 >

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于...

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网
(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可; (2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理. (1)证明:连接OB, ∵OA=OB, ∴∠OAB=∠OBA, ∵PA=PB, ∴∠PAB=∠PBA, ∴∠OAB+∠PAB=∠OBA+∠PBA, ∴∠PAO=∠PBO.(2分) 又∵PA是⊙O的切线, ∴∠PAO=90°, ∴∠PBO=90°, ∴OB⊥PB.(4分) 又∵OB是⊙O半径, ∴PB是⊙O的切线,(5分) 说明:还可连接OB、OP,利用△OAP≌△OBP来证明OB⊥PB. (2)【解析】 连接OP,交AB于点D, ∵PA=PB, ∴点P在线段AB的垂直平分线上. ∵OA=OB, ∴点O在线段AB的垂直平分线上, ∴OP垂直平分线段AB,(7分) ∴∠PDA=90°. 又∵PA切⊙O于点A, ∴∠PAO=90°, ∴∠PAO=∠PDA, 又∵∠APO=∠DPA, ∴△APO∽△DPA, ∴, ∴AP2=PO•DP. 又∵OD=BC=, ∴PO(PO-OD)=AP2,即PO(PO-)=AP2,即:PO2-PO=, 解得PO=2,(9分) 在Rt△APO中,,即⊙O的半径为1.(10分) 说明:求半径时,还可证明△PAO∽△ABC或在Rt△OAP中利用勾股定理.
复制答案
考点分析:
相关试题推荐
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把统计图补充完整;
(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?
查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
南平是海峡西岸经济区的绿色腹地.如图所示,我市的A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西方向上.现计划修建的一条高速铁路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内.请问这条高速铁路会不会穿越保护区,为什么?

manfen5.com 满分网 查看答案
先化简、再求值:manfen5.com 满分网-a-2),其中a=manfen5.com 满分网-3.
查看答案
解方程:(x-3)2+2x(x-3)=0
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.