满分5 > 初中数学试题 >

如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°....

如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.
(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK______MK(填“>”,“<”或“=”);
②如图4,当∠CDF=30°时,AM+CK______MK(只填“>”或“<”);
(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK______MK,证明你所得到的结论;
(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数和manfen5.com 满分网的值.
manfen5.com 满分网
(1)先证明△CDA是等腰三角形,再根据等腰三角形的性质证明AM+CK=MK;在△MKD中,AM+CK>MK(两边之和大于第三边); (2)作点C关于FD的对称点G,连接GK,GM,GD.证明△ADM≌△GDM后,根据全等三角形的性质,GM=AM,GM+GK>MK,∴AM+CK>MK; (3)根据勾股定理的逆定理求得∠GKM=90°,又∵点C关于FD的对称点G,∴<CKG=90°,<FKC=<CKG=45°,根据三角形的外角定理,就可以求得∠CDF=15°;在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,∴∠GMK=30°,利用余弦定理解得=. 【解析】 (1)①在Rt△ABC中,D是AB的中点, ∴AD=BD=CD=,∠B=∠BDC=60° 又∵∠A=30°, ∴∠ACD=60°-30°=30°, 又∵∠CDE=60°,或∠CDF=60°时, ∴∠CKD=90°, ∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合), ∵CK=0,或AM=0, ∴AM+CK=MK;(2分) ②由①,得 ∠ACD=30°,∠CDB=60°, 又∵∠A=30°,∠CDF=30°,∠EDF=60°, ∴∠ADM=30°, ∴AM=MD,CK=KD, ∴AM+CK=MD+KD, ∴在△MKD中,AM+CK>MK(两边之和大于第三边).(2分) (2)>(2分) 证明:作点C关于FD的对称点G, 连接GK,GM,GD, 则CD=GD,GK=CK,∠GDK=∠CDK, ∵D是AB的中点,∴AD=CD, ∴GD=AD.∠DAC=∠DCA=30°, ∴∠CDA=120°, ∵∠EDF=60°,∴∠GDM+∠GDK=60°, ∠ADM+∠CDK=60°. ∴∠ADM=∠GDM,(3分) ∵DM=DM, ∴ ∴△ADM≌△GDM,(SAS) ∴GM=AM. ∵GM+GK>MK,∴AM+CK>MK.(1分) (3)由(2),得GM=AM,GK=CK, ∵MK2+CK2=AM2, ∴MK2+GK2=GM2, ∴∠GKM=90°, 又∵点C关于FD的对称点G, ∴∠CKG=90°,∠FKC=∠CKG=45°, 又由(1),得∠A=∠ACD=30°, ∴∠FKC=∠CDF+∠ACD, ∴∠CDF=∠FKC-∠ACD=15°, 在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°, ∴∠GMK=30°, ∴=, ∴= 综上可得:∠CDF的度数为15°,的值为.
复制答案
考点分析:
相关试题推荐
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网 查看答案
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把统计图补充完整;
(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?
查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
南平是海峡西岸经济区的绿色腹地.如图所示,我市的A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西方向上.现计划修建的一条高速铁路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内.请问这条高速铁路会不会穿越保护区,为什么?

manfen5.com 满分网 查看答案
先化简、再求值:manfen5.com 满分网-a-2),其中a=manfen5.com 满分网-3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.