满分5 >
初中数学试题 >
已知-2的相反数是a,则a是( ) A.2 B.- C. D.-2
已知-2的相反数是a,则a是( )
A.2
B.-
C.
D.-2
考点分析:
相关试题推荐
如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线
上,AB边在直线
上.
(1)直接写出O、A、B、C的坐标;
(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交边OA、OC于M、N(M、N可以与A、C重合),作⊙Q与边AB、BC,弧MN都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;
(3)以O为圆心、OA为半径做扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥.若可以,求出这个圆的面积,若不可以,说明理由.
查看答案
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
查看答案
为宣传秀山丽水,在“丽水文化摄影节”前夕,丽水电视台摄制组乘船往返于丽水(A)、青田(B)两码头,在A、B间设立拍摄中心C,拍摄瓯江沿岸的景色.往返过程中,船在C、B处均不停留,离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息,解答下列问题:
(1)船只从码头A→B,航行的时间为______小时、航行的速度为______千米/时;船只从码头B→A,航行的时间为______小时、航行的速度为______千米/时;
(2)过点C作CH∥t轴,分别交AD、DF于点G、H,设AC=x,GH=y,y与x之间的函数关系式为______;
(3)若拍摄中心C设在离A码头25千米处,摄制组在拍摄中心C分两组行动,一组乘橡皮艇漂流而下,另一组乘船到达码头B后,立即返回.
①船只往返C、B两处所用的时间为______;
②两组在途中相遇,相遇时船只离拍摄中心C的距离为______千米.
查看答案
如图,以菱形ABCD的边AB为直径的⊙O交对角线AC于点P,过P作PE⊥BC,垂足为E.
(1)求证:PE是⊙O的切线;
(2)若菱形ABCD的面积为24,tan∠PAB=
,求PE的长.
查看答案
提出问题:如图,有一块分布均匀的等腰三角形蛋糕(AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:
(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
(2)小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.
查看答案