连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.
【解析】
连接BB'交AE于点O,如图所示:
由折线法及点E是BC的中点,∴EB=EB′=EC,
∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;
又∵△BB'C三内角之和为180°,
∴∠BB'C=90°;
∵点B′是点B关于直线AE的对称点,
∴AE垂直平分BB′;
在Rt△AOB和Rt△BOE中,BO2=AB2-AO2=BE2-(AE-AO)2
将AB=4,BE=3,AE==5代入,得AO=cm;
∴BO===cm,
∴BB′=2BO=cm,
∴在Rt△BB'C中,B′C===cm.
故答案为:cm.