满分5 >
初中数学试题 >
截止2010年6月5日11时28分,上海世博园参观人数累计突破10000000人...
截止2010年6月5日11时28分,上海世博园参观人数累计突破10000000人次,这个数用科学记数法可表示为(保留两个有效数字)( )
A.1.0×108
B.1.0×107
C.1.00×107
D.1.00×108
考点分析:
相关试题推荐
-6的相反数是( )
A.-6
B.-
C.
D.6
查看答案
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
查看答案
为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:
树苗 | 每棵树苗批发价格(元) | 两年后每棵树苗对空气的净化指数 |
杨树 | 3 | 0.4 |
丁香树 | 2 | 0.1 |
柳树 | p | 0.2 |
信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.
信息二:如下表:设购买杨树、柳树分别为x株、y株.
(1)写出y与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当每株柳树的批发价p等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?
(3)当每株柳树批发价p(元)与购买数量y(株)之间存在关系p=3-0.005y时,求购买树苗的总费用w(元)与购买杨树数量x(株)之间的函数关系式?(不要求写出自变量的取值范围)
查看答案
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;
(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;
(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=
,求BE
2+DG
2的值.
查看答案
已知二次函数y=x
2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.
查看答案