满分5 > 初中数学试题 >

如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形...

如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

manfen5.com 满分网
(1)由题意知OB=2OA=2n,在直角三角形AEO中,OF=OB-BF=-2n-AF,因此可用勾股定理求出AF的表达式,也就求出了FB的长,由于F的坐标为(0,m)据此可求出m,n的关系式,可用n替换掉一次函数中m的值,然后将A点的坐标代入即可求出k的值. (2)思路同(1)一样,先用n表示出E、F、G的坐标,然后代入抛物线的解析式中,得出a,b,c与n的函数关系式,然后用n表示出二次函数的解析式,进而可用n表示出H点的坐标,然后求出△AMH的面积和矩形AOBC的面积进行比较即可. 【解析】 (1)根据题意得到:E(3n,0),G(n,-n) 当x=0时,y=kx+m=m, ∴点F坐标为(0,m) ∵Rt△AOF中,AF2=m2+n2, ∵FB=AF, ∴m2+n2=(-2n-m)2, 化简得:m=-0.75n, 对于y=kx+m,当x=n时,y=0, ∴0=kn-0.75n, ∴k=0.75. (2)∵抛物线y=ax2+bx+c过点E、F、G, ∴, 解得:a=,b=-,c=-0.75n, ∴抛物线为y=x2-x-0.75n, 解方程组:, 得:x1=5n,y1=3n;x2=0,y2=-0.75n, ∴H坐标是:(5n,3n),HM=-3n,AM=n-5n=-4n, ∴△AMH的面积=0.5×HM×AM=6n2; 而矩形AOBC的面积=2n2, ∴△AMH的面积:矩形AOBC的面积=3,不随着点A的位置的改变而改变.
复制答案
考点分析:
相关试题推荐
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层A位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层B位置和第四层C位置处的概率各是多少?

manfen5.com 满分网 查看答案
小胖和小瘦去公园玩标准的跷跷板游戏,两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我就能翘到1米25,甚至更高!”
(1)你认为小胖的话对吗?请你作图分析说明;
(2)你能否找出将小瘦翘到1米25高的方法?试说明.

manfen5.com 满分网 查看答案
已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式.
查看答案
如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?
(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?

manfen5.com 满分网 查看答案
如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.