满分5 > 初中数学试题 >

如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,...

如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.
①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是   
②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=   
manfen5.com 满分网
①根据圆和正方形的对称性可知:GH=DG=GF,在直角三角形FGH中,利用勾股定理可得HF=,从而用含a的代数式表示半圆的半径为a,正方形边长为2a,所以可求得半圆的半径与正方形边长的比; ②连接EB、AE,OH、OI,可得OHCI是正方形,且边长是4,可设BD=x,AD=y,则BD=BH=x,AD=AI=y,分别利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21. 【解析】 ①如图,根据圆和正方形的对称性可知:GH=DG=GF, H为半圆的圆心,不妨设GH=a,则GF=2a, 在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a, 所以半圆的半径与正方形边长的比是a:2a=:2; ②因为正方形DEFG的面积为100,所以正方形DEFG边长为10. 连接EB、AE,OI、OJ, ∵AC、BC是⊙O的切线, ∴CJ=CI,∠OJC=∠OIC=90°, ∵∠ACB=90°, ∴四边形OICJ是正方形,且边长是4, 设BD=x,AD=y,则BD=BI=x,AD=AJ=y, 在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①; 在直角三角形AEB中, ∵∠AEB=90°,ED⊥AB, ∴△ADE∽△BDE∽△ABE, 于是得到ED2=AD•BD,即102=x•y②. 解①式和②式,得x+y=21, 即半圆的直径AB=21.
复制答案
考点分析:
相关试题推荐
如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N=    ;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=    (用含有n的式子表示).
manfen5.com 满分网 查看答案
对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc).若(1,2)⊕(p,q)=(5,0),则p=    ,q=    查看答案
若方程manfen5.com 满分网的解是非负数,则a的取值范围是    查看答案
若3a2-a-2=0,则5+2a-6a2=    查看答案
如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.