满分5 > 初中数学试题 >

如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c...

如图,已知直线y=manfen5.com 满分网x+1与y轴交于点A,与x轴交于点D,抛物线y=manfen5.com 满分网x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.

manfen5.com 满分网
(1)易得点A(0,1),那么把A,B坐标代入y=x2+bx+c即可求得函数解析式; (2)让直线解析式与抛物线的解析式结合即可求得点E的坐标.△PAE是直角三角形,应分点P为直角顶点,点A是直角顶点,点E是直角顶点三种情况探讨; (3)易得|AM-MC|的值最大,应找到C关于对称轴的对称点B,连接AB交对称轴的一点就是M.应让过AB的直线解析式和对称轴的解析式联立即可求得点M坐标. 【解析】 (1)将A(0,1)、B(1,0)坐标代入y=x2+bx+c 得, 解得, ∴抛物线的解折式为y=x2-x+1;(2分) (2)设点E的横坐标为m,则它的纵坐标为m2-m+1, 即E点的坐标(m,m2-m+1), 又∵点E在直线y=x+1上, ∴m2-m+1=m+1 解得m1=0(舍去),m2=4, ∴E的坐标为(4,3).(4分) (Ⅰ)当A为直角顶点时, 过A作AP1⊥DE交x轴于P1点,设P1(a,0)易知D点坐标为(-2,0), 由Rt△AOD∽Rt△P1OA得 即, ∴a=, ∴P1(,0).(5分) (Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点, 由Rt△AOD∽Rt△P2ED得, 即=, ∴EP2=, ∴DP2== ∴a=-2=, P2点坐标为(,0).(6分) (Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b、0), 由∠OPA+∠FPE=90°,得∠OPA=∠FEP,Rt△AOP∽Rt△PFE, 由得, 解得b1=3,b2=1, ∴此时的点P3的坐标为(1,0)或(3,0),(8分) 综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0); (3)抛物线的对称轴为,(9分) ∵B、C关于x=对称, ∴MC=MB, 要使|AM-MC|最大,即是使|AM-MB|最大, 由三角形两边之差小于第三边得,当A、B、M在同一直线上时|AM-MB|的值最大.(10分) 易知直线AB的解折式为y=-x+1 ∴由, 得, ∴M(,-).(11分)
复制答案
考点分析:
相关试题推荐
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.
(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.

manfen5.com 满分网 查看答案
为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.
(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?

manfen5.com 满分网 查看答案
如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.
①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是   
②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=   
manfen5.com 满分网 查看答案
如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N=    ;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=    (用含有n的式子表示).
manfen5.com 满分网 查看答案
对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc).若(1,2)⊕(p,q)=(5,0),则p=    ,q=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.