满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D. (1)请写出四个不同...

如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交manfen5.com 满分网于D.
(1)请写出四个不同类型的正确结论;
(2)连接CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并予以证明.

manfen5.com 满分网
(1)AB是⊙O的直径,BC是弦,OD⊥BC于E,本题满足垂径定理. (2)根据四边形ACDB为圆内接四边形,可以得到α-β=90°,再根据∠CDO=∠ODB=∠CDB得到α>2β. 【解析】 (1)不同类型的正确结论有: ①BE=CE; ②BD=CD; ③∠BED=90°; ④∠BOD=∠A; ⑤AC∥OD; ⑥AC⊥BC; ⑦OE2+BE2=OB2; ⑧S△ABC=BC•OE; ⑨△BOD是等腰三角形; ⑩△BOE∽△BAC;等等. (说明:1.每写对一条给(1分),但最多只给(4分); (结论与辅助线有关且正确的,也相应给分). (2)α与β的关系式主要有如下两种形式,请参照评分: ①答:α与β之间的关系式为:α-β=90°(5分) 证明:∵AB为圆O的直径 ∴∠A+∠ABC=90°①(6分) 又∵四边形ACDB为圆内接四边形 ∴∠A+∠CDB=180°②(7分) ∴②-①得:∠CDB-∠ABC=90° 即α-β=90°(8分) (说明:关系式写成α=90°+β或β=α-90°的均参照给分.) ②答:α与β之间的关系式为:α>2β(5分) 证明:∵OD=OB ∴∠ODB=∠OBD 又∵∠OBD=∠ABC+∠CBD ∴∠ODB>∠ABC(6分) ∵OD⊥BC, ∴CD=BD ∴∠CDO=∠ODB=∠CDB(7分) ∴∠CDB>∠ABC 即α>2β.(8分) (说明:若得出α与β的关系式为α>β,且证明正确的也给满分.)
复制答案
考点分析:
相关试题推荐
先化简,再求值:(manfen5.com 满分网-manfen5.com 满分网manfen5.com 满分网,其中x=manfen5.com 满分网
查看答案
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-manfen5.com 满分网x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是   
manfen5.com 满分网 查看答案
将反比例函数y=manfen5.com 满分网的图象绕原点O顺时针旋转90°后,其图象所表示的函数解析式为    查看答案
如图,Rt△BAO的直角边OA在y轴上,点B在第一象限内,OA=3,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点的坐标是   
manfen5.com 满分网 查看答案
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.