满分5 > 初中数学试题 >

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系...

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为manfen5.com 满分网且过顶点C(0,5)(长度单位:m)
(1)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(2)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并增加铺设斜面EG和HF,已知矩形EFGH的周长为27.5m,求增加斜面的长.
manfen5.com 满分网
(1)求出抛物线与x轴交点的坐标,AB的长度即可求得,再由已知顶点C的坐标,根据平移的性质求得地毯的总长度,进一步求得面积解决问题; (2)设出抛物线点G的坐标,分别表示出矩形的长和宽,并利用矩形的周长求得长和宽,进一步利用矩形的性质及勾股定理解答问题. 【解析】 (1)因为顶点C(0,5),c=5,所以OC=5, 令y=0,即, 解得x1=10,x2=-10, ∴AB=10-(-10)=20, ∴地毯的总长度为:AB+2OC=20+2×5=30, ∴30×1.5×20=900(元). 答:购买地毯需要900元. (2)设G的坐标为,其中m>0, 则. 由已知得:2(EF+GF)=27.5, 即, 解得:m1=5,m2=35(不合题意,舍去), 把m1=5代入=. ∴点G的坐标是(5,3.75). ∴EF=10,GF=3.75; ∴, 又∵EG=HF, ∴. 答:斜面的长为.
复制答案
考点分析:
相关试题推荐
将军家俱市场现有大批如图所示的边角余料(单位:cm),城西中学数学兴趣小组决定将其加工成等腰三角形,且方案如下:
manfen5.com 满分网
(1)三角形中至少有一边长为10 cm;
(2)三角形中至少有一边上的高为8 cm,请在备用图上画出分割线,并求出相应图形面积.
查看答案
“五一”期间,国美电器商城设计了两种优惠方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送购物券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠购物券100元;不少于600元的,所赠购物券是购买电器金额的manfen5.com 满分网,另再送50元现金(注:每次购买电器时只能使用其中一种优惠方式)
(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x﹙x≥400﹚元,优惠金额为y元,则:①当x=500时,y=100;②当x≥600时,y=manfen5.com 满分网x+50;
(2)如果小张想一次性购买原价为x﹙400≤x<600﹚元的电器,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式
(3)如果小张在三天内在此商城先后两次购买电器时都得到了优惠券(且第二次购买时未使用第一次的优惠券),所得优惠券金额累计达800元,设他购买电器的金额为W元,W至少应为多少(W=支付金额一所送现金金额)
查看答案
某商场为了迎接“六一”儿童节的到来,制造了一个超大的“不倒翁”.小灵对“不倒翁”很感兴趣,原来“不倒翁”的底部是由一个空心的半球做成的,并在底部的中心(即图中的C处)固定一个重物,再从正中心立起一根杆子,在杆子上作些装饰,在重力和杠杆的作用下,“不倒翁”就会左摇右晃,又不会完全倒下去.小灵画出剖面图,进行细致研究:圆弧的圆心为点O,过点O的木杆CD长为260cm,OA、OB为圆弧的半径长为90cm(作为木杆的支架),且OA、OB关于CD对称,弧AB的长为30πcm.当木杆CD向右摆动使点B落在地面上(即圆弧与直线l相切于点B)时,木杆的顶端点D到直线l的距离DF是多少cm?
manfen5.com 满分网
查看答案
①存在两个不同的无理数,它们的积是整数; ②存在两个不同的无理数,它们的差是非零整数; ③存在两个不同的非整数的有理数,它们的和与商都是整数.先判断这3个结论分别是正确还是错误的,如果正确,请举出符合结论的两个数.
查看答案
如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=manfen5.com 满分网(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.