满分5 > 初中数学试题 >

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B. ...

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
manfen5.com 满分网
(1)已知抛物线的顶点为A(2,1),设抛物线顶点式,把点O(0,0)代入即可求解析式; (2)依题意得CD∥OB,CD=OB=4,又对称轴x=2,故D点横坐标x=6,代入抛物线解析式可求D点纵坐标,根据对称轴可求满足条件的点D′; (3)根据抛物线对称轴可知AO=AB,△AOB为等腰三角形,要使得△OBP与△OAB相似,则∠POB=∠BOA,A与A′对称,可求直线OP的解析式,与抛物线解析式联立可求P点坐标,检验BP与OB是否相等. 【解析】 (1)由题意可设抛物线的解析式为 y=a(x-2)2+1 ∵抛物线过原点, ∴0=a(0-2)2+1, ∴. 抛物线的解析式为y=-(x-2)2+1, 即y=-x2+x (2)如图1,当四边形OCDB是平行四边形时,CD=OB, 由0=-(x-2)2+1得x1=0,x2=4, ∴B(4,0),OB=4. 由于对称轴x=2 ∴D点的横坐标为6. 将x=6代入y=-(x-2)2+1,得y=-3, ∴D(6,-3); 根据抛物线的对称性可知, 在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(-2,-3), 当四边形OCBD是平行四边形时,D点即为A点,此时D点的坐标为(2,1) (3)不存在. 如图2,由抛物线的对称性可知:AO=AB,∠AOB=∠ABO. 若△BOP与△AOB相似,必须有∠POB=∠BOA=∠BPO 设OP交抛物线的对称轴于A′点,显然A′(2,-1) ∴直线OP的解析式为y=-x 由-x=-x2+x,得x1=0,x2=6. ∴P(6,-3) 过P作PE⊥x轴,在Rt△BEP中,BE=2,PE=3, ∴PB=≠4. ∴PB≠OB, ∴∠BOP≠∠BPO, ∴△PBO与△BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点P,使得△BOP与△AOB相似.
复制答案
考点分析:
相关试题推荐
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
manfen5.com 满分网
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
查看答案
如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动.
(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t.
①当0<t≤4manfen5.com 满分网时,试求出m的取值范围;
②当t>4manfen5.com 满分网时,你认为m的取值范围如何?(只要求写出结论)

manfen5.com 满分网 查看答案
2006年房价上涨,2007年初某房地产开发公司计划扩大房地产开发--建A、B两种户型的住房共100套,该公司所筹资金不少于2400万元,但不多于2420万元,且所筹资金全部用于建房,预计两种户型的建房成本和售价如下表:
 A型B型
成本(万元/套)2030
售价(万元/套)2538
(1)按预计,该公司对这两种户型住房有哪几种建房方案?
(2)该公司在修建时建筑成本上涨10%(售价不变),该公司该采用哪种方案建房才获得最大利润?
(3)在(2)的条件下,根据市场调查每套B型住房的售价不会变,每套A型住房的售价将会提高a万元(a>0),且所修建的两种住房可以全部售出,该公司又将如何建房获得利润最大?
查看答案
为了鼓励市民节约用水,市政府制定了新的收费标准:设用水量为x吨,需付水费为y元,y与x的函数图象如图.
(1)写出y与x的函数关系.
(2)小华家今年5月交水费17元,则这月小华家用水多少吨?
(3)已知某住宅小区100户居民5月份共付水费1682元,且该月每户用水量均不超过15吨,求该月用水量不超过10吨的居民最多可能有多少户?
A型B型
成本(万元/套)2030
售价(万元/套)2538


manfen5.com 满分网 查看答案
如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.
(1)求此圆的半径;
(2)求图中阴影部分的面积(其中л≈3,manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.