满分5 > 初中数学试题 >

已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC. ...

已知如图,矩形OABC的长OA=manfen5.com 满分网,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=-manfen5.com 满分网x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

manfen5.com 满分网
(1)根据OC、OA的长,可求得∠OCA=∠ACP=60°(折叠的性质),∠BCA=∠OAC=30°,由此可判断出∠PCB的度数. (2)过P作PQ⊥OA于Q,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的长,进而可得到点P的坐标,将P、A坐标代入抛物线的解析式中,即可得到b、c的值,从而确定抛物线的解析式,然后将C点坐标代入抛物线的解析式中进行验证即可. (3)根据抛物线的解析式易求得C、D、E点的坐标,然后分两种情况考虑: ①DE是平行四边形的对角线,由于CD∥x轴,且C在y轴上,若过D作直线CE的平行线,那么此直线与x轴的交点即为M点,而N点即为C点,D、E的坐标已经求得,结合平行四边形的性质即可得到点M的坐标,而C点坐标已知,即可得到N点的坐标; ②DE是平行四边形的边,由于A在x轴上,过A作DE的平行线,与y轴的交点即为N点,而M点即为A点;易求得∠DEA的度数,即可得到∠NAO的度数,已知OA的长,通过解直角三角形可求得ON的值,从而确定N点的坐标,而M点与A点重合,其坐标已知; 同理,由于C在y轴上,且CD∥x轴,过C作DE的平行线,也可找到符合条件的M、N点,解法同上. 【解析】 (1)在Rt△OAC中,OA=,OC=1,则∠OAC=30°,∠OCA=60°; 根据折叠的性质知:OA=AP=,∠ACO=∠ACP=60°; ∵∠BCA=∠OAC=30°,且∠ACP=60°, ∴∠PCB=30°. (2)过P作PQ⊥OA于Q; Rt△PAQ中,∠PAQ=60°,AP=; ∴OQ=AQ=,PQ=, 所以P(,); 将P、A代入抛物线的解析式中,得: , 解得; 即y=-x2+x+1; 当x=0时,y=1,故C(0,1)在抛物线的图象上. (3)①若DE是平行四边形的对角线,点C在y轴上,CD平行x轴, ∴过点D作DM∥CE交x轴于M,则四边形EMDC为平行四边形, 把y=1代入抛物线解析式得点D的坐标为(,1) 把y=0代入抛物线解析式得点E的坐标为(-,0) ∴M(,0);N点即为C点,坐标是(0,1); ②若DE是平行四边形的边, 过点A作AN∥DE交y轴于N,四边形DANE是平行四边形, ∴DE=AN===2, ∵tan∠EAN=, ∴∠EAN=30°, ∵∠DEA=∠EAN, ∴∠DEA=30°, ∴M(,0),N(0,-1); 同理过点C作CM∥DE交y轴于N,四边形CMDE是平行四边形, ∴M(-,0),N(0,1).
复制答案
考点分析:
相关试题推荐
A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.
(1)求y关于x的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.

manfen5.com 满分网 查看答案
如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
manfen5.com 满分网
查看答案
有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).
(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;
(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.

manfen5.com 满分网 查看答案
一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置)、现把n张这样的餐桌按如图方式拼接起来.
(1)问四周可以坐多少人用餐?(用n的代数式表示)
(2)若有28人用餐,至少需要多少张这样的餐桌?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.