延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,所以CG'=BG=6,根据重心的性质可求得DG=DG′=3,则GG'=6,又CG=10,所以△CGG'是直角三角形,并可求得其面积,从而得出△BGC的面积,即可求得△ABC的面积.
【解析】
延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,
∴CG′=BG=8,
∵DG=AG=3,
∴DG=DG′=3,
∴GG′=6,
∵CG=10,
∴△CGG′是直角三角形,
∴S△GBC=S△CGG′=×8×6=24,
∴S△ABC=3S△GBC=72.
故选C.