由二次函数y=2x2+8x+7可知,此函数的对称轴为x=-2,顶点坐标为(-2,-),二次项系数a=2>0,故此函数的图象开口向上,有最小值,设点(1,y3)关于x=-2的对称点为A,根据二次函数的性质可知点A′的坐标为(-,y3),因为二次函数y=2x2+8x+7的图象开口向上,有最小值,在对称轴的左侧为减函数,故看判断y2>y3>y1.
【解析】
∵对称轴为x=-2,顶点坐标为(-2,-),二次项系数a=2>0
∴此函数的图象开口向上,有最小值,x=-2时y=-
设点(1,y3)关于x=-2的对称点为A,横坐标为a,则=-2
∴a=-
∴点A′的坐标为(-,y3)
∴x=2时y=-,故y1最小
∵-5<-<-2
∴y2>y3>y1.
故选A.