满分5 > 初中数学试题 >

北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为...

北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为筹集善款,对其日本原产品进行大幅度销售,有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
(1)根据所有产品数量及所给产品数量分别得到甲店B型商品,乙店A型商品,乙店B型商品的数量,那么总利润等于每件相应商品的利润×相应件数之和;根据各个店面的商品的数量为非负数可得自变量的取值; (2)让(1)中的代数式≥17560,结合(1)中自变量的取值可得相应的分配方案; (3)根据让利后A型产品的每件利润仍高于甲店B型产品的每件利润可得a的取值,结合(1)得到相应的总利润,根据a的不同取值得到利润的函数应得到的最大值的方案即可. 【解析】 依题意,甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有(x-10)件,则 (1)W=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800. 由解得10≤x≤40. (2)由W=20x+16800≥17560,∴x≥38.∴38≤x≤40,x=38,39,40.∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件. ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件. ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大. ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样. ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
复制答案
考点分析:
相关试题推荐
路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)

manfen5.com 满分网 查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
①存在两个不同的无理数,它们的积是整数; ②存在两个不同的无理数,它们的差是非零整数; ③存在两个不同的非整数的有理数,它们的和与商都是整数.先判断这3个结论分别是正确还是错误的,如果正确,请举出符合结论的两个数.
查看答案
勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于   
manfen5.com 满分网 查看答案
如图,矩形纸片ABCD,点E是AB上一点,且BE:EA=5:3,EC=manfen5.com 满分网,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.