满分5 > 初中数学试题 >

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①)...

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的manfen5.com 满分网?若存在,求出此时x的值;若不存在,说明理由.

manfen5.com 满分网
(1)可将四边形CHGK分成两部分,然后通过证三角形全等,将四边形的面积进行转换来求解.连接CG,可通过证明三角形CGK与三角形BGH全等来得出他们的面积相等,进而将四边形CHGK的面积转换成三角形CGB的面积也就是三角形ABC面积的一半,由此可得出四边形CHGK的面积是4,所以不会改变; (2)连接HK后,根据(1)中得出的四边形CHGK的面积为4,可根据三角形GHK的面积=四边形CHGK的面积-三角形CHK的面积来求,如果BH=x,那么根据(1)的结果CK=x,有BC的长,那么CH=4-x,由此可得出关于x,y的函数关系式.x的取值范围应该大于零小于4; (3)只需将y=×8代入(2)的函数式中,可得出x的值.然后判断x是否符合要求即可. 【解析】 (1)在上述旋转过程中,BH=CK,四边形CHGK的面积不变. 证明:连接CG,KH, ∵△ABC为等腰直角三角形,O(G)为其斜边中点, ∴CG=BG,CG⊥AB, ∴∠ACG=∠B=45°, ∵∠BGH与∠CGK均为旋转角, ∴∠BGH=∠CGK, 在△BGH与△CGK中, ∴△BGH≌△CGK(ASA), ∴BH=CK,S△BGH=S△CGK. ∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4, 即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化; (2)∵AC=BC=4,BH=x, ∴CH=4-x,CK=x. 由S△GHK=S四边形CHGK-S△CHK, 得y=4-x(4-x), ∴y=x2-2x+4. 由0°<α<90°,得到BH最大=BC=4, ∴0<x<4; (3)存在. 根据题意,得x2-2x+4=×8, 解这个方程,得x1=1,x2=3, 即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的.
复制答案
考点分析:
相关试题推荐
某初级中学为了解学生的身高状况,在1500名学生中抽取部分学生进行抽样统计,结果如下:
组别        分组 频数 频率 
   1130.5~140.5   3 0.05
   2140.5~150.5   m 0.15
   3150.5~160.5  27 n
   4160.5~170.5  180.30 
   5 170.5~180.5 30.05 
 合计   
请你根据上面的图表,解答下列问题:
(1)m=______,n=______
(2)补全频率分布直方图.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知:直线y=-x反比例函数manfen5.com 满分网的图象的一个交点为A(a,3).
(1)试确定反比例函数的解析式;
(2)写出该反比例函数与已知直线l的另一个交点坐标.
查看答案
如图,△ABC内接于⊙O,点D在OC的延长线上,已知:∠B=∠CAD=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB,求sin∠BAC的值.

manfen5.com 满分网 查看答案
将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友能分到但分不到8个苹果.求这一箱苹果的个数与小朋友的人数.
查看答案
有两个可以自由转动的均匀转盘A,B,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏,用树状图或列表法,求两数相加和为零的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.