满分5 >
初中数学试题 >
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个...
下面四个几何体中,左视图是四边形的几何体共有( )
A.1个
B.2个
C.3个
D.4个
考点分析:
相关试题推荐
-
的绝对值是( )
A.-2
B.-
C.2
D.
查看答案
如图,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,点E从A点出发以每秒2个单位长的速度向B点运动,点F从C点同时出发,以每秒1个单位长的速度向D点运动.设运动时间为t秒,当一个动点到达终点时,另一个动点也随之停止运动,过点F作FH⊥AB于点P,连接BD交FP于点O,连接OE.
(1)底边AB=______;
(2)设△BOE的面积为S
△BOE;
①求S
△BOE与时间t的函数关系式;
②当t为何值时,S
△BOE=
S
梯形ABCD.
(3)是否存在点E,使得△BOE为直角三角形;若存在,求出t的值;若不存在,请说明理由;
(4)是否存在某一时刻,使得OE∥BC?若存在,直接写出t的值;若不存在,请说明理由.
查看答案
某企业决定慎重投资,经企业信息部进行市场调研,调研结果如下:
信息一、如果单独投资A中产品,则所获利润y
A(万元)与投资金额x(万元)之间存在正比例函数关系:y
A=kx,并且当投资2.5万元时,可获利润1万元.
信息二:如果单独投资B种产品,则所获利润y
B(万元)与投资金额x(万元)之间存在二次函数关系:y
B=ax
2+bx,并且当投资1万元时,可获利润1.4万元;当投资4万元时,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式和二次函数表达式;
(2)如果企业对A、B两种产品投资金额相同,且获得总利润为5万元,问:此时对两种产品的投资金额各是多少万元?
(3)如果企业同时对A、B两种产品共投资10万元,能否获得6万元的利润?
查看答案
在矩形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上,连接AC、FC,并过点F作FH⊥BC,交BC的延长线于点H.
(1)如图1,当AB=BC时;
①求证:矩形AEFG是正方形;
②猜想AC、FC的位置关系,并证明你的猜想.
(2)如图2,当AB≠BC时,上面的猜想还成立吗?若不成立,请说明理由;若成立,请给出证明.
查看答案
我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是______;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
+
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=______,DB=______;
②在AB上取一点P,可设AP=______,BP=______;
③
+
的最小值即为线段______和线段______长度之和的最小值,最小值为______.
查看答案